Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng:
\(2^{10}+2^{11}+2^{12}\)
\(=2^{10}\left(1+2+2^2\right)\)
\(=2^{10}.7\) \(⋮\) 7
Vậy \(2^{10}+2^{11}+2^{12}\) chia hết cho 7
Chứng minh rằng:
\(3^{n+3}+3^{n+2}+2^{n+3}+2^{n+2}\)
\(=3^n.3^3+3^n.3^2+2^n.2^3+2^n.2^2\)
\(=3^n\left(3^3+3^2\right)+2^n\left(2^3+2^2\right)\)
\(=36.3^n+12.3^n\)
\(=6\left(6.3^n+2.3^n\right)\) \(⋮\) 6 với mọi n \(\in\) N
Vậy \(3^{n+3}+3^{n+2}+2^{n+3}+2^{n+2}\) chia hết cho 6 với mọi n \(\in\) N
Ta có: 3n+2 - 2n+2 + 3n - 2n
= 3n(32 + 1) - 2n(22 + 1)
= 10 . 3n - 5 . 2n
= 10 . 3n - 10 . 2n - 1
= 10(3n - 2n - 1) chia hết cho 10
Vậy 3n+2 - 2n+2 + 3n - 2n chia hết cho 10
Ta có : 3n + 2 - 2n + 2 + 3n - 2n
= 3n . 32 - 2n . 22 + 3n - 2n
= 9 . 3n + 3n - 4 . 2n - 2n
= 10 . 3n - 5 . 2n
= 10 . 3n - 10 . 2n - 1
= 10 . ( 3n - 2n - 1 ) chia hết cho 10
Ta có: \(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n\cdot3^2-2^n\cdot2^2+3^n-2^n\)
\(=9\cdot3^n+3^n-4\cdot2^n-2^n\)
\(=10\cdot3^n-5\cdot2^n\)
\(=10\cdot3^n-10\cdot2^{n-1}\)
\(=10\cdot\left(3^n-2^{n-1}\right)\) chia hết cho 10
\(3^{n+5}+3^{n+1}+2^{n+3}+2^{n+2}=3^{n+1}.\left(81+1\right)+2^{n+2}.\left(2+1\right)\)
\(=3^n.41.6+2^{n+1}.6=6.\left(3^n.41+2^{n+1}\right)\)
Luôn luôn chia hết cho 6
a)5\(^5\)-5\(^4\)+5\(^3\)=5\(^3\)x5\(^2\)-5\(^3\)x5\(^1\)+5\(^3\)x1=\(5^3\)x(\(5^2-5^1+1\))=\(5^3\)x121
Coi a là số tự nhiên nhỏ nhất
Bài 1 Khi chia a cho 3 dư 1 ; chia 4 dư 2, 5 dư 3 suy ra a-1 chia hết cho 3, a-2 chia hết cho 4,a-3 chia hết cho 5,a-4 chia hết cho 6
hay a+2 chia hết cho3,a+2 chia hết cho 4,a+2 chia hết cho 5,a+2 chia hết cho 6 suy ra a+2 thuộc BC(3,4,5,6)
Suy ra BCNN(3,4,5,6)=32. 23.5=360
BCNN(3,4,5,6)=B(360)=(0;360;720;1080;...)
a thuộc(358;718;1078,..)
Mà a là số tự nhiên nhỏ nhất và chia hết cho11 suy ra a=1078
Bài 3 3n+1 là bội của 10 suy ra 3n+1 có tận cùng là 0 từ đó suy ra 3n+1=(...0)
3n =(...9) (số tận cùng của 3n=9)
Ta có 3n+4+1=3n.34+1
=(...9).(...1) +1
= (...0) Vậy 3n+4+1 có tận cùng là 0
Suy ra 3n+4+1 là bội của 10
Câu tương tự
Click vào câu hởi tương tự