Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{a^n}{a^n}=1\)
mà \(\frac{a^n}{a^n}=a^{n-n}=a^0\)
nên \(a^0=1\)
a) \(M=2020+2020^2+...+2020^{10}\)
\(M=\left(2020+2020^2\right)+\left(2020^3+2020^4\right)+...+\left(2020^9+2020^{10}\right)\)
\(M=2020\left(1+2020\right)+2020^3\left(1+2020\right)+...+2020^9\left(1+2020\right)\)
\(M=2021\left(2020+2020^3+...+2020^9\right)⋮2021\).
b) Bạn làm tương tự câu a).
b, \(A=2021+2021^2+...+2021^{2020}\)
\(=2021\left(1+2021\right)+...+2021^{2019}\left(1+2021\right)\)
\(=2022\left(2021+...+2021^{2019}\right)⋮2022\)
Vậy ta có đpcm
Giai:A=20+21+22+...+299
A=(1+2+22+23+24)+(25+26+27+28+29)+...+(295+296+297+298+299)
A=(1+2+22+23+24)+25(1+2+22+23+24)+...+295(1+2+22+23+24)
A=31+25.31+...+295.31
A=31(25+210+...+295) chia het cho 31
=>A chia het cho 31
\(2A=2+2^2+2^3+2^4+...+2^{100}\)
\(A=2A-A=2^{100}-1\Rightarrow A+1=2^{100}\)
\(85=17.5\)
Ta có:
\(a=4^0+4^1+4^2+4^3+...+4^{96}+4^{97}\)
\(=4^0+4^1+4^2\left(4^0+4^1\right)+...+4^{96}\left(4^0+4^1\right)\)
\(=\left(4^0+4^1\right)\left(1+4^2+...+4^{96}\right)\)
\(a=5\left(1+4^2+...+4^{96}\right)\)nên \(a\) chia hết cho \(5\)
Lại có: \(a=4^0+4^1+4^2+4^3+...+4^{96}+4^{97}\)
\(=4^0+4^2+4^1\left(4^0+4^2\right)+4^4\left(4^0+4^2\right)+4^5\left(4^0+4^2\right)+...+4^{94}\left(4^0+4^2\right)+4^{95}\left(4^0+4^2\right)\)
\(a=17\left(1+4^1+4^4+4^5+...+4^{94}+4^{95}\right)\)nên \(a\) chia hết cho \(17\)
Mà \(\left(5;17\right)=1\)
Vậy, ......
a0 = a1-1 = \(\dfrac{a}{a}\) = 1 (đk a#0)
a0 = 1 (đpcm)
a0 = a1-1 = \dfrac{a}{a}
a\(\dfrac{a}{a}\) = 1 (đk a#0)
a0 = 1 (đpcm)