Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 144 =(142)2 =1962 ; 1=12
=> 144 - 1 =1962 - 12 =(196 -1)2
=1952 Mà 1952 chia hết cho 3 nên => 144 - 1 chia hết cho 3
b, Ta có :
A= 2+22+23+.....+260
A=(2+22+23+24)+(25+26+27+28)+.....+(256+257+258+259260)
A=2(1+22+23)+25(1+22+23)+.....+256(1+22+22+23)
A=2*15+25*15+.....+256*15
A=15(2+25+.....+256) chia hết cho 15
nhớ **** cho mk nka !
ta có
\(A=\left(4+4^2+4^3\right)+..+\left(4^{34}+4^{35}+4^{36}\right)\)
\(\Leftrightarrow A=4.21+4^4.21+..+4^{34}.21\) do đó A chia hết cho 3
mà \(A=\left(4+4^2\right)+\left(4^3+4^4\right)+..+\left(4^{35}+4^{36}\right)\)
hay \(A=20+4^2.20+..+4^{34}.20\) do đó A chia hết cho 5
do A vừa chia hết cho 3 và 5, nên A chia hết cho 15
C= 2 + 22 + 23 + ....+ 260
C= (2 + 22) + (23 +24)+ ....+(259+ 260)
= 2(1+2)+23(1+2)+......+259(1+2)
= 2.3+23.3......+259.3
=3(2+23.....+259) chia hết cho 3
+) C= 2 + 22 + 23 + ....+ 260
= (2 + 22 + 23) +(24 + 25 + 26) +....+ (248+249+260) có 60:3 = 20 nhóm
= 2(1+2 + 22)+24(1+2 + 22)+....+248(1+2 + 22)
= 2.7+24.7+....+248.7
= 7.(2+24+....+248) chia hết cho 7
tương tự nhóm 4 số hạng thì được thừa số là 15 nên chia hết cho 15
CMR C : 3 , 7,15
nhóm 3 số vào 1 nhóm rồi ts chúng riêng nhom thứ nhất tính ra luôn
S=1+3^2+3^4+3^6+...+3^2002
3^2S=3^2+3^4+3^8+..+3^2004
9S-S=3^2+3^4+3^6+3^8+...+3^2004-1-3^2-3^4-3^6-...-3^2002
8S=3^2004-1
S=(3^2004-1):8
b) (1+3^2+3^4)+...+(3^1998+3^2000+3^2002)
=91+...+3^1998(1+3^2+3^4)
=91(1+...+3^1998) chia hết cho 7
Xét :\(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\)
\(=\left(a^2+a\right)+\left(b^2+b\right)+\left(c^2+c\right)+\left(d^2+d\right)\)
\(=a.\left(a+1\right)+b.\left(b+1\right)+c.\left(c+1\right)+d.\left(d+1\right)\)
Ta có : \(a.\left(a+1\right);b.\left(b+1\right);c.\left(c+1\right);d.\left(d+1\right)\) là tích của hai số nguyên dương liên tiếp .Do đó chúng chia hết cho \(2\)
\(\implies\) \(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\) chia hết cho \(2\)
Mà \(a^2+b^2+c^2+d^2=2.\left(b^2+d^2\right)\) chia hết cho \(2\)
\(\implies\) \(a+b+c+d\) chia hết cho \(2\)
Mà \(a+b+c+d\) \(\geq\) \(4\) \(\implies\) \(a+b+c+d\) là hợp số \(\left(đpcm\right)\)
xin lỗi tớ làm nhầm của cậu là số tự nhiên mà tớ lại làm thành số nguyên dương xin lỗi nhé lúc nào tớ làm lại cho
\(A=2^0+2^1+2^2+2^3+...+2^{99}\)
\(=1+2+2^2+2^3+...+2^{99}\)
\(=\left(1+2+2^2+2^3+2^4\right)+...+\left(2^{95}+2^{96}+2^{97}+2^{98}+2^{99}\right)\)
\(=\left(1+2+4+8+16\right)+...+2^{95}.\left(1+2+2^2+2^3+2^4\right)\)
\(=31+...+2^{95}.31\)
\(=31.\left(1+...+2^{95}\right)⋮31\)
\(\Rightarrow\) \(A⋮31\)
Ta có: 32013=3.3.3.3.3......3
=> Ta có: 32013= (3.3).(3.3).(3.3)...............(3.3).3
=> 32013= (9.9).(9.9).........(9.9).3
=> 32013= ...1....1....1............1.3
=> 32013= .....3 (....3 có nghĩa là tận cùng bằng 3 nha bạn)
Vì các số có tận cùng = 1 thì nhân cho chính nó bao nhiêu lần cũng bằng 1
=> 11671=......1
Mà .....3-.....1=.......2
Số có tận cùng bằng 2 thì chia hết cho 2
=> A chia hết cho 2 ĐPCM
32013 là số lẻ
11671 là số lẻ
=> A = lẻ - lẻ = chẵn
=> A chia hết cho 2