Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) chia hết cho 2 :
Dễ thấy tất cả các hạng tử của 2 đều chia hết cho 2
=> A chia hết cho 2
+) chia hết cho 3 :
A = 2 + 22 + ... + 299 + 2100
A = ( 2 + 22 ) + ... + ( 299 + 2100 )
A = 2 ( 1 + 2 ) + ... + 299 ( 1 + 2 )
A = 2 . 3 + ... + 299 . 3
A = 3 . ( 2 + ... + 299 ) chia hết cho 3
+) chia hết cho 15 : tương tự
Gợi ý : nhóm 4 số một
+) chia hết cho 31 : tương tự
Gợi ý : nhóm 5 số một
Ta có ﴾6x+11y﴿ =31﴾x+6y﴿‐25﴾x+7y﴿
Do 6x+11y và 31﴾x+6y﴿ đều chia hết cho 31
=> 25﴾x+7y﴿ chia hết cho 31
Do ﴾25,31﴿=1 ﴾vì 25;31 là hai số nguyên tố cùng nhau﴿
Nên x+7y chia hết cho 31
Vậy ...
1) Xét hiệu:
6 x (a+7b)-(6a+11b)
= 6a+42b-6a-11b
=31b
Vs b thuộc N thì 31b chia hết cho 31
=>6 x (a+7b)-(6a+11b) chia hết cho 31
Mà a+7b chia hết cho 31 nên 6 x (a+7b) chia hết cho 31
=>6a+11b chia hết cho 31
A = 1 + 5 + 52 + 53 + ... + 597 + 598 + 599
A = ( 1 + 5 + 52 ) + ( 53 + 54 + 55) + ... + ( 597 + 598 + 599 )
A = ( 1 + 5 + 52 ) + 53 ( 1 + 5 + 52 ) + ... + 597( 1 + 5 + 52 )
A = 31 ( 1 + 53 + ... + 597 )
=> A chia hết cho 31
ban oi mk thay A ko chia het cho 31 vi gop 3 so moi chia het ma co 100 so thi gop 3 so se du 1 so 5^99
neu 5^99 chia het cho 31 thi A moi chia het cho 31
neu sai mong cac ban thong cam nha
Giai:A=20+21+22+...+299
A=(1+2+22+23+24)+(25+26+27+28+29)+...+(295+296+297+298+299)
A=(1+2+22+23+24)+25(1+2+22+23+24)+...+295(1+2+22+23+24)
A=31+25.31+...+295.31
A=31(25+210+...+295) chia het cho 31
=>A chia het cho 31
\(A=2^0+2^1+2^2+2^3+...+2^{99}\)
\(=1+2+2^2+2^3+...+2^{99}\)
\(=\left(1+2+2^2+2^3+2^4\right)+...+\left(2^{95}+2^{96}+2^{97}+2^{98}+2^{99}\right)\)
\(=\left(1+2+4+8+16\right)+...+2^{95}.\left(1+2+2^2+2^3+2^4\right)\)
\(=31+...+2^{95}.31\)
\(=31.\left(1+...+2^{95}\right)⋮31\)
\(\Rightarrow\) \(A⋮31\)