K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: góc B=90-30=60 độ

Xét ΔABC vuông tại A có cos C=AC/BC

=>10/BC=căn 3/2

hay \(BC=\dfrac{20}{3}\sqrt{3}\left(cm\right)\)

=>\(AC=\dfrac{10}{3}\sqrt{3}\left(cm\right)\)

2: \(BC=\sqrt{21^2+18^2}=3\sqrt{85}\left(cm\right)\)

Xét ΔABC vuông tại A có tan C=AB/AC=7/6

nên góc C=50 độ

=>góc B=40 độ

3: góc C=90-60=30 độ

Xét ΔABC vuông tại A có sin C=AB/BC

=>AB/8=1/2

hay AB=4cm

=>\(AC=4\sqrt{3}\left(cm\right)\)

14 tháng 7 2019

1)

gọi I là giao điểm của BD và CE

ta có E là trung điểm cua AB nên EB bằng 3 cm

xét △EBI có \(\widehat{I}\)=900 

EB2 = EI2 + BI2 =32=9             (1)

tương tự IC2 + DI2 = 16            (2)

lấy (1) + (2) ta được

EI2+DI2+BI2+IC2=25

⇔ ED2+BC2=25

xét △ABC có E là trung điểm của AB và D là trung điểm của AC

⇒ ED là đường trung bình của tam giác

⇒ 2ED =BC

⇔ ED2=14BC2

⇒ 14BC2+BC2=25

⇔ 54BC2=25

⇔ BC2=20BC2=20

⇔ BC=√20

31 tháng 7 2019

Ta có: \(S_{AHC}=\frac{AH.AC}{2}=96\left(cm^2\right)\Rightarrow AH.AC=192cm\)(1)

\(S_{ABH}=\frac{AH.BH}{2}=54\left(cm^2\right)\Rightarrow AH.BH=108cm\)(2)

Từ (1) và (2) \(\Rightarrow AH.BH.AH.HC=20736\)

Mà: AH2=BH.CH

    => AH2.AH2=BH.CH.AH2

   <=> AH4=20736

    => AH=12cm

    => BH=9cm ; CH=16cm

      Vậy BC=25cm

Y
5 tháng 7 2019

Kẻ 3 đg cao AD,BE,CF của ΔABC

+ \(\left\{{}\begin{matrix}sinA=\frac{BE}{c}\\sinB=\frac{CF}{a}\\sinC=\frac{AD}{b}\end{matrix}\right.\)

+ \(S_{ABC}=\frac{1}{2}\cdot BE\cdot b=\frac{1}{2}\cdot CF\cdot c=\frac{1}{2}\cdot AD\cdot a\)

\(\Rightarrow S_{ABC}=\frac{1}{2}bc\cdot\frac{BE}{c}=\frac{1}{2}ca\cdot\frac{CF}{a}=\frac{1}{2}ab\cdot\frac{AD}{b}\)

\(\Rightarrow S_{ABC}=\frac{1}{2}bc\cdot sinA=\frac{1}{2}ca\cdot sinB=\frac{1}{2}ab\cdot sinC\)

20 tháng 6 2017

Hạ đường cao BH

Ta có:

\(S_{\Delta ABC}=\dfrac{1}{2}.BH.AC\)

\(=\dfrac{1}{2}.AB\)\(.\)\(\dfrac{BH}{AB}.AC\)

\(=\dfrac{1}{2}.AB.sin\left(\widehat{A}\right).AC\)( Điều phải chứng minh)

AH
Akai Haruma
Giáo viên
16 tháng 7 2018

Lời giải:

Kẻ $AH$ vuông góc với $BC$. Khi đó:
\(S_{ABC}=\frac{AH.BC}{2}(1)\)

Mặt khác, theo công thức lượng giác:

\(\frac{AH}{AB}=\sin B\Rightarrow AH=\sin B.AB(2)\)

Từ \((1);(2)\Rightarrow S_{ABC}=\frac{\sin B.AB.BC}{2}=\frac{\sin B.ca}{2}\) (đpcm)

25 tháng 8 2018

Bài 1: Cho tam giác ABC vuông tại A, đường cao AH. a) Biết AH = 6cm, BH = 4,5cm.Tính AB, AC, BC,HC. b) Biết AB = 6cm, BH = 3cm.Tính AH và tính chu vi của các tam giác vuông trong hình.

Bài 1:

\(HC=\dfrac{AH^2}{HB}=\dfrac{36}{4.5}=8\left(cm\right)\)

BC=BH+CH=12,5cm

\(AB=\sqrt{4.5\cdot12.5}=7.5\left(cm\right)\)

\(AC=\sqrt{8\cdot12.5}=10\left(cm\right)\)

25 tháng 8 2018

Bài 1) Ta có △ABC có đường cao AH ⇒AH2=BH.HC⇒36=4,5.HC⇒HC=8(cm)

Ta có BC=HC+BH=4,5+8=12,5(cm)

Ta có AB2=BH.BC=4,5.12,5=56,25⇒AB=7,5(cm)

Ta có AC2=BC2-AB2=156,25-56,25=100⇒AC=10(cm)

Bài 2) Chắc bạn ghi sai đề rồi

25 tháng 8 2018

bài 2 mình ghi đúng mà bạn