K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2018

Bài 1: Cho tam giác ABC vuông tại A, đường cao AH. a) Biết AH = 6cm, BH = 4,5cm.Tính AB, AC, BC,HC. b) Biết AB = 6cm, BH = 3cm.Tính AH và tính chu vi của các tam giác vuông trong hình.

Bài 1:

\(HC=\dfrac{AH^2}{HB}=\dfrac{36}{4.5}=8\left(cm\right)\)

BC=BH+CH=12,5cm

\(AB=\sqrt{4.5\cdot12.5}=7.5\left(cm\right)\)

\(AC=\sqrt{8\cdot12.5}=10\left(cm\right)\)

25 tháng 8 2018

Bài 1) Ta có △ABC có đường cao AH ⇒AH2=BH.HC⇒36=4,5.HC⇒HC=8(cm)

Ta có BC=HC+BH=4,5+8=12,5(cm)

Ta có AB2=BH.BC=4,5.12,5=56,25⇒AB=7,5(cm)

Ta có AC2=BC2-AB2=156,25-56,25=100⇒AC=10(cm)

Bài 2) Chắc bạn ghi sai đề rồi

25 tháng 8 2018

bài 2 mình ghi đúng mà bạn

29 tháng 10 2021

a, \(BC=BH+HC=5\left(cm\right)\)

Áp dụng HTL: \(\left\{{}\begin{matrix}AB=\sqrt{BH\cdot BC}=2\sqrt{5}\left(cm\right)\\AC=\sqrt{CH\cdot BC}=\sqrt{5}\left(cm\right)\end{matrix}\right.\)

b, Áp dụng HTL: \(AH=\dfrac{AB\cdot AC}{BC}=2\left(cm\right)\)

29 tháng 10 2021

a: BC=4+1=5(cm)

\(\Leftrightarrow\left\{{}\begin{matrix}AB=2\sqrt{5}\left(cm\right)\\AC=\sqrt{5}\left(cm\right)\end{matrix}\right.\)

b: \(AH=\sqrt{HB\cdot HC}=2\left(cm\right)\)

30 tháng 7 2020

a. Xét ΔABC ( \(\widehat{BAC}=90^o\) ) theo hệ thức lượng ta có:

AC2 = HC . BC => HC = \(\frac{AC^2}{BC}\)= \(\frac{6^2}{12}\)= 3cm

=> BH = BC - HC = 12 - 3 = 9cm

b. Xét ΔABC ( \(\widehat{BAC}=90^o\) ) theo hệ thức lượng ta có:

AH2 = BH . HC = 2 . 5 = 10 => AH = \(\sqrt{10}\)cm

Xét ΔABH và ΔACH \(\left(\widehat{H}=90^o\right)\)theo định lí py - ta - go ta có:

\(AB=\sqrt{BH^2+AH^2}=\sqrt{2^2+\sqrt{10}^2}=\sqrt{14}cm\)

\(AC=\sqrt{HC^2+AH^2}=\sqrt{5^2+\sqrt{10^2}}=\sqrt{35}cm\)

c. Xét ΔAHC \(\left(\widehat{AHC}=90^o\right)\)theo định lí py - ta - go ta có:

\(AC=\sqrt{HC^2+AH^2}=\sqrt{3^2+4^2}=5cm\)

Xét ΔABC ( \(\widehat{BAC}=90^o\) ) theo hệ thức lượng ta có:

\(AH^2=HC.BH=>BH=\frac{AH^2}{HC}=\frac{4^2}{3}=\frac{16}{3}cm\)

\(AB=\sqrt{BH^2+AH^2}=\sqrt{\left(\frac{16}{3}\right)^2+4^2}=\frac{20}{3}cm\)

d. Ta có: \(\frac{AB}{AC}=\frac{3}{4}=>4AB=3AC< =>4.6=3AC< =>24=3AC< =>AC=8cm\)

Xét ΔABC ( \(\widehat{BAC}=90^o\) ) theo định lí py - ta - go ta có:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10cm\)

Xét ΔABC ( \(\widehat{BAC}=90^o\) ) theo hệ thức lượng ta có:\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{6^2}+\frac{1}{8^2}=\frac{25}{576}=>AH^2=\frac{576}{25}=23.04=>AH=\sqrt{23.04}=4,8cm\)

Xét ΔABH \(\left(\widehat{H}=90^o\right)\)theo định lí py - ta - go ta có:

\(BH=\sqrt{AB^2-AH^2}=\sqrt{6^2-4.8^2}=3,6cm\)

=> HC = BC - BH = 10 - 3,6 = 6,4cm