K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Y
5 tháng 7 2019

Kẻ 3 đg cao AD,BE,CF của ΔABC

+ \(\left\{{}\begin{matrix}sinA=\frac{BE}{c}\\sinB=\frac{CF}{a}\\sinC=\frac{AD}{b}\end{matrix}\right.\)

+ \(S_{ABC}=\frac{1}{2}\cdot BE\cdot b=\frac{1}{2}\cdot CF\cdot c=\frac{1}{2}\cdot AD\cdot a\)

\(\Rightarrow S_{ABC}=\frac{1}{2}bc\cdot\frac{BE}{c}=\frac{1}{2}ca\cdot\frac{CF}{a}=\frac{1}{2}ab\cdot\frac{AD}{b}\)

\(\Rightarrow S_{ABC}=\frac{1}{2}bc\cdot sinA=\frac{1}{2}ca\cdot sinB=\frac{1}{2}ab\cdot sinC\)

15 tháng 10 2019

H F D E A B C

a) \(\widehat{BFC}=\widehat{BEC}=90o\) => tứ giác BFEC nội tiếp => \(\widehat{AEF}=\widehat{ABC;}\widehat{AFE}=\widehat{ABC}\)=> \(\Delta AEF~\Delta ABC\)

SAEF = \(\frac{1}{2}AE.AF.sinA\); SABC = \(\frac{1}{2}AB.AC.sinA\)=>\(\frac{S_{AEF}}{S_{ABC}}=\frac{AE.AF}{AB.AC}\)=cos2A   (cosA = \(\frac{AE}{AB}=\frac{AF}{AC}\))

b) làm tương tự câu a ta được SBFD=cos2B.SABC; SCED=cos2C.SABC

=> SDEF =SABC-SAEF-SBFD-SCED = (1-cos2A-cos2B-cos2C)SABC

Tham khảo:

*

Chứng minh định lý hàm cos

 

*

Chứng minh định lý hàm cos – Phương trình 1

 

*

Chứng minh định lý hàm cos – Phương trình 2

 

*

Chứng minh định lý hàm cos – Phương trình 3

 

Với d = b cosC thế vào phương trình biến đổi (3) ta rút ra điều phải chứng minh!

3 tháng 8 2018

A B C D E a b c

a) Kẻ  \(CE\perp AB\)

Ta có :  \(S_{\Delta ABC}=\frac{1}{2}CE.AB\left(1\right)\)

Xét  \(\Delta ACE\)có  \(\sin A=\frac{EC}{AC}\)

\(\Rightarrow\frac{1}{2}AB.AC.\sin A=\frac{1}{2}AB.AC.\frac{EC}{AC}=\frac{1}{2}AB.EC\left(2\right)\)

Từ (1) và (2)  \(\Rightarrow S_{\Delta ABC}=\frac{1}{2}AB.AC.\sin A\left(đpcm\right)\)

b) Kẻ  \(BD\perp AC\)

Xét  \(\Delta ADB\)có  \(\sin A=\frac{BD}{AB}\)

\(\Rightarrow\frac{a}{\sin A}=BC\div\frac{BD}{AB}=\frac{BC.AB}{BD}\left(3\right)\)

Lại có :  \(\sin A=\frac{EC}{AC}\)( câu a )

\(\Rightarrow\frac{a}{\sin A}=BC\div\frac{EC}{AC}=\frac{CA.BC}{EC}\left(4\right)\)

Xét  \(\Delta BEC\)có  \(\sin B=\frac{EC}{BC}\)

\(\Rightarrow\frac{b}{\sin B}=CA\div\frac{EC}{BC}=\frac{CA.BC}{EC}\left(5\right)\)

Xét  \(\Delta BDC\)có  \(\sin C=\frac{DB}{BC}\)

\(\Rightarrow\frac{c}{\sin C}=AB\div\frac{DB}{BC}=\frac{AB.BC}{DB}\left(6\right)\)

Từ (3) ; (4) ; (5) và (6)  \(\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\left(đpcm\right)\)

c) Xét  \(\Delta ABD\)có  \(\cos A=\frac{AD}{AB}\)

Áp dụng định lí Py-ta-go cho  \(\Delta ABD\)vuông tại D ta được :

\(AB^2=BD^2+AD^2\)

Áp dụng định lí Py-ta-go cho  \(\Delta BDC\)vuông tại D ta được :

\(BD^2+DC^2=BC^2\)

Ta có :  \(b^2+c^2-2bc.\cos A\)

\(=AB^2+AC^2-2AB.AC.\cos A\)

\(=BD^2+AD^2+AC^2-2AB.AC.\frac{AD}{AB}\)

\(=BD^2+\left(AC^2-2AD.AC+AD^2\right)\)

\(=BD^2+\left(AC-AD\right)^2\)

\(=BD^2+DC^2\)

\(=BC^2=a\left(đpcm\right)\)

H A B C

a)Kẻ đường cao : BH , AI , CK
Ta có: sinA = BH / c ; sinB = AI / c
=> sinA/sinB = BH / AI ﴾1﴿
Mà BH = a.sinC ; AI = b.sinC
=> BH/AI = a/b ﴾2﴿
Từ ﴾1﴿ và ﴾2﴿ suy ra sinA/sinB = a/b => a/sinA = b/sinB
Bạn chỉ việc nói chứng minh tượng tự , ta có:
b/sinB = c/sinC ; c/sinC = a/sinA
Từ đó suy ra a /sinA = b / sinB = c /sinC
Chúc bạn học tốt

NHỚ TK MK NHA

12 tháng 8 2019

:vvvvvv sai đề, làm mãi ko ra, \(S_{BMP}=S_2\) mới đúng nha, thiếu đỉnh B 

a) Kẻ các đường cao NN1, CC1 tương ứng với AB (N1, C1 thuộc AB) 

\(\Delta ACC_1\) có \(NN_1//CC_1\) ( do cùng vuông góc với AB ) \(\Rightarrow\)\(\frac{NN_1}{CC_1}=\frac{AN}{AC}\) ( hệ quả định lí Ta-let ) 

Có: \(\frac{S_1}{S}=\frac{\frac{1}{2}NN_1.AP}{\frac{1}{2}CC_1.AB}=\frac{NN_1}{CC_1}.\frac{AP}{AB}=\frac{AN.AP}{AC.AB}\) ( đpcm ) 

b) Tương tự câu a, kẻ các đường cao MM2, MM3 tương ứng với AB và AC (M2 thuộc AB, M3 thuộc AC) 

\(\Delta BCC_1\) có \(MM_2//CC_1\) ( cùng vuông góc với AB ) \(\Rightarrow\)\(\frac{MM_2}{CC_1}=\frac{BM}{BC}\) ( hệ quả Ta-let ) 

\(\frac{S_2}{S}=\frac{\frac{1}{2}MM_2.BP}{\frac{1}{2}CC_1.AB}=\frac{MM_2}{CC_1}.\frac{BP}{AB}=\frac{BM.BP}{BC.AB}\) (1) 

Tiếp tục kẻ các đường cao MM3, BB1 tương ứng với AC ( M3, B1 thuộc AC ) 

\(\Delta BB_1C\) có \(MM_3//BB_1\) ( cùng vuông góc với AC ) \(\Rightarrow\)\(\frac{MM_3}{BB_1}=\frac{CM}{BC}\)

\(\frac{S_3}{S}=\frac{\frac{1}{2}MM_3.CN}{\frac{1}{2}BB_1.AC}=\frac{MM_3}{BB_1}.\frac{CN}{AC}=\frac{CM.CN}{BC.AC}\) (2) 

Từ (1), (2) và kết luận câu a) ta suy ra \(\hept{\begin{cases}S_1=\frac{AN.AP}{AC.AB}S\\S_2=\frac{BM.BP}{BC.AB}S\\S_3=\frac{CM.CN}{BC.AC}S\end{cases}}\)

\(\Rightarrow\)\(S_1.S_2.S_3=\frac{AN.AP}{AC.AB}.\frac{BM.BP}{BC.AB}.\frac{CM.CN}{BC.AC}S^3\) ( nhân 3 vế ba đẳng thức trên ) 

\(\Leftrightarrow\)\(S_1.S_2.S_3=\frac{AP.BP}{AB^2}.\frac{AN.CN}{AC^2}.\frac{BM.CM}{BC^2}S^3\)

Mà \(\hept{\begin{cases}AP.BP=\left(\sqrt{AP.BP}\right)^2\le\left(\frac{AP+BP}{2}\right)^2=\left(\frac{AB}{2}\right)^2=\frac{AB^2}{4}\\AN.CN=\left(\sqrt{AN.CN}\right)^2\le\left(\frac{AN+CN}{2}\right)^2=\left(\frac{AC}{2}\right)^2=\frac{AC^2}{4}\\BM.CM=\left(\sqrt{BM.CM}\right)^2\le\left(\frac{BM+CM}{2}\right)^2=\left(\frac{BC}{2}\right)^2=\frac{BC^2}{4}\end{cases}}\)

\(\Rightarrow\)\(S_1.S_2.S_3\le\frac{\frac{AB^2}{4}}{AB^2}.\frac{\frac{AC^2}{4}}{AC^2}.\frac{\frac{BC^2}{4}}{BC^2}S^3=\frac{1}{64}S^3\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}AP=BP\\AN=CN\\BM=CM\end{cases}}\) hay M, N, P lần lượt là trung điểm của BC, AC, AB