K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2017

Từ \(a^3+b^3+c^3=3abc\)\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Rightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Rightarrow\left[\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{matrix}\right.\)\(\Rightarrow\left[\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)

*)Xét \(a=b=c\). Khi đó \(\frac{a^{2011}}{b^{2011}}+\frac{b^{2011}}{c^{2011}}+\frac{c^{2011}}{a^{2011}}=1+1+1=3\)

*)Xét \(a+b+c=0\Rightarrow\)\(\left\{\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\). Khi đó \(\frac{a^{2011}}{b^{2011}}+\frac{b^{2011}}{c^{2011}}+\frac{c^{2011}}{a^{2011}}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\)

6 tháng 1 2017

bạn có cần cách giải ko, mình r ết quả = 3 đó

14 tháng 1 2017

\(\hept{\begin{cases}a+b+c=1\left(1\right)\\a^3+b^3+c^3=1\left(2\right)\end{cases}\Leftrightarrow\hept{\begin{cases}a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)=1\\a^3+b^3+c^3=1\end{cases}}}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

\(\hept{\begin{cases}a+b=0\\a+c=0\\b+c=0\end{cases}}\)dấu "{" là dấu hoặc nhé hàm f(x) không có "[" ba(*)

(*) và (1)\(\Rightarrow P=1\)

14 tháng 6 2016
Em mới học lớp 7
14 tháng 6 2016

VTVP=a24+b2+c2abbc+2bc+a212=(a2bc)2+a236bc12>0 đpcm

Cách khác:

Từ giả thiết suy ra a>0 và bc>0. Bất đẳng thức cần chứng minh tương đương với
a23+(b+c)23bca(b+c)013+(b+ca)2b+ca3a30
Vì a3>36 nên13+(b+ca)2b+ca3a3>(b+ca)2b+ca+14=(b+ca12)2>0
3 tháng 12 2014

uây! giống câu hỏi cua mik

 

3 tháng 12 2014

đừng có chép câu TL của tui nhá cu cÒng 

Điều đó là không tốt đâu thằng đệ à 

Hahahaha!!!

4 tháng 3 2015

nâng cao và phat trien toán 8 tap 1....

 

4 tháng 3 2015

troi!minh ko co sach nay

2 tháng 12 2014

Từ gt a2 + b2 + c2 = ab + bc + ca suy ra a = b = c( Bạn coi lại hình như có một bài toán thế này rồi)

Vậy ta có 3a2011 = 32012  \(\Rightarrow\)3a2011 - 32012 = 0 \(\Rightarrow\)3(a2011 - 32011) = 0 \(\Rightarrow\)a2011 = 32011. Do đó a = 3

Vậy a = b = c =3

13 tháng 3 2018

số ab này bằng 1 hoặc bằng 0 nên a^2011+b^2011 bằng 0 hoặc 1 và tất nhên nó băng mấy cái trên

13 tháng 3 2018

a;b \(\in\){0;1}

TH1: a;b =0

a2011+b2011=0^2011+0^2011=0

TH2: a;b=1

a^2011 + b^2011 = 1 + 1 = 2

16 tháng 12 2016

ta có \(\frac{x^2}{a^2}\)\(\frac{y^2}{b^2}\)+\(\frac{z^2}{c^2}\)\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)

=> ( \(\frac{x^2}{a^2}\)\(\frac{y^2}{b^2}\)\(\frac{z^2}{c^2}\))( \(a^2+b^2+c^2\))= \(x^2+y^2+z^2\)

=> \(x^2\)\(\frac{\left(b^2+c^2\right)x^2}{a^2}\)\(y^2\)\(\frac{\left(a^2+c^2\right)y^2}{b^2}\)\(z^2\)\(\frac{\left(a^2+b^2\right)z^2}{c^2}\)\(x^2+y^2+z^2\)

=> \(\frac{\left(b^2+c^2\right)x^2}{a^2}\)\(\frac{\left(a^2+c^2\right)y^2}{b^2}\)\(\frac{\left(a^2+b^2\right)z^2}{c^2}\)= 0

nhận xét ...... ( tát cả đều lớn hơn hoặc = 0 nên cả tổng sẽ lớn hơn hoặc = 0)

dấu = xảy ra khi và chi khi x=y = z = 0 ( vì a,b,c khác 0)

vậy \(x^{2011}+y^{2011}+z^{2011}\)= 0 +0+0 = 0