Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}a+b+c=1\left(1\right)\\a^3+b^3+c^3=1\left(2\right)\end{cases}\Leftrightarrow\hept{\begin{cases}a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)=1\\a^3+b^3+c^3=1\end{cases}}}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
\(\hept{\begin{cases}a+b=0\\a+c=0\\b+c=0\end{cases}}\)dấu "{" là dấu hoặc nhé hàm f(x) không có "[" ba(*)
(*) và (1)\(\Rightarrow P=1\)
Ta có
(a+b+c)^2=0
=>a^2+b^2+c^2+2(ab+bc+ca)=0
Mà ab+bc+ca=0
=>a^2+b^2+c^2=0
=>a=0
b=0
c=0
Thay a=0;b=0;c=0 vào S ta được
S=1^2009+0^2010+1^2011=2
Vậy S=2
Đề \(\Rightarrow\left(a^{2011}+b^{2011}\right)-2\left(a^{2010}+b^{2010}\right)+\left(a^{2009}+b^{2009}\right)=0\)
\(\Leftrightarrow a^{2011}-2a^{2010}+a^{2009}+b^{2011}-2b^{2010}+b^{2009}=0\)
\(\Leftrightarrow a^{2009}\left(a^2-2a+1\right)+b^{2009}\left(b^2-2b+1\right)=0\)
\(\Leftrightarrow a^{2009}\left(a-1\right)^2+b^{2009}\left(b-1\right)^2=0\)
\(\Leftrightarrow a-1=b-1=0\text{ (do }a,\text{ }b>0\text{)}\)
\(\Leftrightarrow a=b=1\)
\(\Rightarrow a^{2012}+b^{2012}=1+1=2\)
uây! giống câu hỏi cua mik
đừng có chép câu TL của tui nhá cu cÒng
Điều đó là không tốt đâu thằng đệ à
Hahahaha!!!