K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2015

Đề \(\Rightarrow\left(a^{2011}+b^{2011}\right)-2\left(a^{2010}+b^{2010}\right)+\left(a^{2009}+b^{2009}\right)=0\)

\(\Leftrightarrow a^{2011}-2a^{2010}+a^{2009}+b^{2011}-2b^{2010}+b^{2009}=0\)

\(\Leftrightarrow a^{2009}\left(a^2-2a+1\right)+b^{2009}\left(b^2-2b+1\right)=0\)

\(\Leftrightarrow a^{2009}\left(a-1\right)^2+b^{2009}\left(b-1\right)^2=0\)

\(\Leftrightarrow a-1=b-1=0\text{ (do }a,\text{ }b>0\text{)}\)

\(\Leftrightarrow a=b=1\)

\(\Rightarrow a^{2012}+b^{2012}=1+1=2\)

Y
11 tháng 2 2019

+ \(\left(x^{2011}+y^{2011}\right)\left(x+y\right)\)

\(=x^{2012}+y^{2012}+xy\left(x^{2010}+y^{2010}\right)\)

\(=\left(x^{2011}+y^{2011}\right)+xy\left(x^{2011}+y^{2011}\right)\)

\(=\left(xy+1\right)\left(x^{2011}+y^{2011}\right)\)

+ Vì x, y dương nên \(x^{2011}+y^{2011}>0\)

=> x + y = xy + 1

=> x + y - xy - 1 = 0

=> ( y - 1 ) - x( y - 1 ) = 0

=> ( 1 - x ) ( y - 1 ) = 0

\(\Rightarrow\left[{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

+ x = 1 => \(1+y^{2010}=1+y^{2011}=1+y^{2012}\)

\(\Rightarrow y^{2010}=y^{2011}\) \(\Rightarrow y^{2010}-y^{2011}=0\)

\(\Rightarrow y^{2010}\left(1-y\right)=0\)

\(\Rightarrow y=1\left(doy>0\right)\)

+ Tương tự nếu y = 1 ta cùng tìm được x = 1

Do đó : A = 2

AH
Akai Haruma
Giáo viên
11 tháng 2 2019

Lời giải khác:

Ta có:

\(x^{2011}+y^{2011}=x^{2010}+y^{2010}\)

\(\Rightarrow x^{2011}-x^{2010}+y^{2011}-y^{2010}=0\)

\(\Leftrightarrow x^{2010}(x-1)+y^{2010}(y-1)=0(1)\)

Và: \(x^{2011}+y^{2011}=x^{2012}+y^{2012}\)

\(\Rightarrow x^{2012}-x^{2011}+y^{2012}-y^{2011}=0\)

\(\Leftrightarrow x^{2011}(x-1)+y^{2011}(y-1)=0(2)\)

Lấy (2)-(1) ta có:

\(x^{2011}(x-1)-x^{2010}(x-1)+y^{2011}(y-1)-y^{2010}(y-1)=0\)

\(\Leftrightarrow x^{2010}(x-1)^2+y^{2010}(y-1)^2=0\)

Dễ thấy \(x^{2010}(x-1)^2\geq 0; y^{2010}(y-1)^2\geq 0, \forall x,y>0\)

Do đó để tổng của chúng bằng $0$ thì \(x^{2010}(x-1)^2=y^{2010}(y-1)^2=0\)

Mà $x,y$ đều dương nên $x=y=1$

Khi đó ta dễ tính ra $A=2$

4 tháng 3 2020

\(x^{2010}+y^{2010}=x^{2011}+y^{2011}=x^{2012}+y^{2012}\)
\(\Leftrightarrow\left(x^{2012}+x^{2010}-2x^{2011}\right)+\left(y^{2012}+y^{2010}-2y^{2011}\right)=9\)\(\rightarrow x^{2010}\left(x^2-2x+1\right)+y^{2010}\left(y^2-y+1\right)=0\)

\(\Leftrightarrow x^{2010}\left(x-1\right)^2+y^{2010}\left(y-1\right)^2=0\)

Do x;y dương => x=y=1

3 tháng 12 2017

2A = 2^2013-2^2012-2^2011-.....-2

A = 2A-A = (2^2013-2^2012-.....-2)-(2^2012-2^2011-....-1) = 2^2013-2.2^2012+1 = 2^2013 - 2^2013 +1 = 1

=> 2012^A = 2012^1 = 2012

k mk nha

13 tháng 2 2018

theo đầu bài ta có\(\dfrac{x^2+y^2}{xy}=\dfrac{10}{3}\)=>\(3x^2+3y^2=10xy\)

A=\(\dfrac{x-y}{x+y}\)

=>\(A^2=\left(\dfrac{x-y}{x+y}\right)^2=\dfrac{x^2-2xy+y^2}{x^2+2xy+y^2}=\dfrac{3x^2-6xy+3y^2}{3x^2+6xy+3y^2}=\dfrac{10xy-6xy}{10xy+6xy}=\dfrac{4xy}{16xy}=\dfrac{1}{4}\)

=>A=\(\sqrt{\dfrac{1}{4}}=\dfrac{-1}{2}hoặc\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\) (cộng trừ căn 1/4 nhé)

vì y>x>0=> A=-1/2

12 tháng 4 2017

Bài 4:

Ta có:

\(a^2-2a+b^2+4b+4c^2-4c+6=0\)

\(\Leftrightarrow a^2-2a+1+b^2+4b+4+4c^2-4c+1\)

\(\Leftrightarrow\left(a^2-2b+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2\)

Mà \(\hept{\begin{cases}\left(a-1\right)^2\ge0\\\left(b+2\right)^2\ge0\\\left(2c-1\right)^2\ge0\end{cases}}\) 

\(\Rightarrow\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2\ge0\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(a-1\right)^2=0\\\left(b+2\right)^2=0\\\left(2c-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=-2\\c=\frac{1}{2}\end{cases}}}\)

Vậy \(\left(a,b,c\right)=\left(1;-2;\frac{1}{2}\right)\)

13 tháng 4 2017

bài này mình biết làm r nè, mấy bài khác cơ =))

3 tháng 12 2014

uây! giống câu hỏi cua mik

 

3 tháng 12 2014

đừng có chép câu TL của tui nhá cu cÒng 

Điều đó là không tốt đâu thằng đệ à 

Hahahaha!!!