K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2019

làm ơn giải dùm ạ

23 tháng 6 2019

để mai nhé bn

Ta có:\(x+y=a\)

=>\(x^2+2xy+y^2=a^2\)

=>\(x^2+y^2=a^2-2xy=a^2-2b\left(đpcm\right)\)

Ta lại có:\(x^3+3x^2y+3xy^2+y^3=a^3\)

=>\(x^3+y^3+3xy\left(x+y\right)=a^3\)

=>\(x^3+y^3=a^3-3xy\left(x+y\right)=a^3-3ab\left(đpcm\right)\)

b)\(a+b+c=0\) =>\(a^3+b^3+c^3+3a^2b+3ab^2+3b^2c+3bc^2+3c^2a+3a^2c+6abc=0\) =>\(a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\) =>\(a^3+b^3+c^3+3\left(-a\right)\left(-b\right)\left(-c\right)=0\) =>\(a^3+b^3+c^3=3abc\left(đpcm\right)\)

10 tháng 9 2017

Tại sao lại có +6abc vậy bạn , ở câu b) đó hiuhiu

17 tháng 7 2017

\(VT=\left(m-a\right)^2+\left(2m-b\right)^2+\left(3m-c\right)^2\)

\(=m^2-2am+a^2+4m^2-4bm+9m^2-6mc+c^2\)

\(=14m^2-2m\left(a+2b+3c\right)+a^2+b^2+c^2\)

\(=14m^2-14m^2+a^2+b^2+c^2\) ( do \(a+2b+3c=7m\) )

\(=a^2+b^2+c^2=VP\)

\(\Rightarrowđpcm\)

17 tháng 7 2017

Ta có: \(VT=\left(m-a\right)^2+\left(2m-b\right)^2+\left(3m-c\right)^2\)

\(=m^2-2ma+a^2+4m^2-4mb+b^2+9m^2-6mc+c^2\)

\(=m^2-2ma+4m^2-4mb+9m^2-6mc+a^2+b^2+c^2\)

\(=m\left(14m-2a-4b-6c\right)+a^2+b^2+c^2\)

\(=-2m\left(-7m+a+2b+6c\right)+a^2+b^2+c^2\)

\(=-2m\left(-7m+7m\right)+a^2+b^2+c^2\)

\(=a^2+b^2+c^2=VP\)

Vậy (m - a)2 + (2m - b)2 + (3m - c)2 = a2 + b2 + c2.

29 tháng 11 2019

Áp dụng BĐT Svac - xơ:

\(\frac{1}{a^2+2ab}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)\(=\frac{1^2}{a^2+2ab}+\frac{1^2}{b^2+2ac}+\frac{1^2}{c^2+2ab}\)

\(\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}=\frac{9}{\left(a+b+c\right)^2}\ge9\)(Vì \(a+b+c\le1\))

(Dấu "="\(\Leftrightarrow a=b=c=\frac{1}{3}\))

26 tháng 8 2020

( a - b + c )2 

= [ ( a - b ) + c ]2

= ( a - b )2 + 2( a - b )c + c2

= a2 - 2ab + b2 + 2ac - 2bc + c2

= a2 + b2 + c2 - 2ab - 2bc + 2ca ( đpcm )

26 tháng 8 2020

\(\left(a-b+c\right)^2\)

\(=\left(a-b+c\right).\left(a-b+c\right)\)

\(=a.\left(a-b+c\right)-b.\left(a-b+c\right)+c.\left(a-b+c\right)\)

\(=a^2-ab+ac-\left(ab-b^2+bc\right)+ac-bc+c^2\)

\(=a^2-ab+ac-ab+b^2-bc+ac-bc+c^2\)

\(=a^2-2ab+2ac+b^2-2bc+c^2\)

\(=a^2+b^2+c^2-2ab-2bc+2ac\)

\(\Rightarrow\left(a-b+c\right)^2=a^2+b^2+c^2-2ab-2bc+2ac\left(đpcm\right).\)

26 tháng 8 2020

Bài làm:

Ta có: \(\left(a-b-c\right)^2\)

\(=\left[a-\left(b+c\right)\right]^2\)

\(=a^2-2a\left(b+c\right)+\left(b+c\right)^2\)

\(=a^2-2ab-2ac+b^2+2bc+c^2\)

\(=a^2+b^2+c^2-2ab+2bc-2ac\)

26 tháng 8 2020

( a - b - c )2

= [ ( a - b ) - c ]2

= ( a - b )2 - 2( a - b )c + c2

= a2 - 2ab + b2 - 2ac + 2bc + c2

= a2 + b2 + c2 - 2ab + 2bc - 2ac ( đpcm )

a)\(a^2+b^2\ge2ab\)

\(\Leftrightarrow a^2+b^2-2ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\left(\forall a,b\right)\)

Dấu "=" xảy ra khi a=b

13 tháng 9 2019

sai đề

13 tháng 9 2019

Từ a+b+c=2m\(\Rightarrow b+c-a=2m-2a\)

\(b+c-a=2\left(m-a\right)\)(1)

Xét \(m=0\)

\(\Rightarrow\hept{\begin{cases}a+b+c=0\\4m\cdot\left(m-a\right)=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\left(a+b+c\right)\left(b+c-a\right)=0\\4m\cdot\left(m-a\right)=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2bc+b^2+c^2-a^2=0\\4m\left(m-a\right)=0\end{cases}}\)

\(\Rightarrowđpcm\)

Xét \(m\ne0\)

Từ (1) \(\Rightarrow2m\left(b+c-a\right)=4m\left(m-a\right)\)

\(\Rightarrow\left(a+b+c\right)\left(b+c-a\right)=4m\left(m-a\right)\)

\(\Rightarrow b^2+c^2+2bc-a^2=4m\left(m-a\right)\)(đpcm)