Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chứng minh 1 bđt phụ:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) (với a;b;c>0)
Thật vậy,ta có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+b+c\right)=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\)
Mà: \(\frac{a}{b}+\frac{b}{a}\ge2;\frac{b}{c}+\frac{c}{b}\ge2;\frac{c}{a}+\frac{a}{c}\ge2\left(Cauchy\right)\)nên ta có đpcm
Vậy bđt đc chứng minh
Áp dụng:
\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{9}{a^2+b^2+c^2+2ab+2bc+2ac}=\frac{9}{\left(a+b+c\right)^2}\ge9\)
Dấu bằng khi a=b=c=1/3
a) a2+b2-2ab=(a-b)2>=0
b) \(\frac{a^2+b^2}{2}\)\(\ge\)ab <=> \(\frac{a^2+b^2}{2}\)-ab\(\ge\)0 <=> \(\frac{\left(a-b\right)^2}{2}\)\(\ge\)0 (ĐPCM)
c) a2+2a < (a+1)2=a2+2a+1 (ĐPCM)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(\Leftrightarrow\frac{bc+ca+ab}{abc}=0\)
\(\Rightarrow bc+ca+ab=0\)
\(\Rightarrow\hept{\begin{cases}bc=-ac-ab\\ca=-bc-ab\\ab=-bc-ca\end{cases}}\)
\(A=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ba}\)
\(A=\frac{a^2}{a^2+bc-ac-ab}+\frac{b^2}{b^2+ca-bc-ab}+\frac{c^2}{c^2+ab-bc-ca}\)
\(A=\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-c\right)\left(b-a\right)}+\frac{c^2}{\left(c-a\right)\left(c-b\right)}\)
Mình tiếp tục nhé
\(A=\frac{a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)=a^2\left(b-c\right)-b^2\left[\left(b-c\right)+\left(a-b\right)\right]+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)-b^2\left(b-c\right)-b^2\left(a-b\right)+c^2\left(a-b\right)=\left(a^2-b^2\right)\left(b-c\right)-\left(b^2-c^2\right)\left(a-b\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(b-c\right)-\left(b-c\right)\left(b+c\right)\left(a-b\right)=\left(a-b\right)\left(b-c\right)\left[\left(a+b\right)-\left(b+c\right)\right]\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
Vậy A = 1
Bài làm:
Ta có: \(\left(a-b-c\right)^2\)
\(=\left[a-\left(b+c\right)\right]^2\)
\(=a^2-2a\left(b+c\right)+\left(b+c\right)^2\)
\(=a^2-2ab-2ac+b^2+2bc+c^2\)
\(=a^2+b^2+c^2-2ab+2bc-2ac\)
( a - b - c )2
= [ ( a - b ) - c ]2
= ( a - b )2 - 2( a - b )c + c2
= a2 - 2ab + b2 - 2ac + 2bc + c2
= a2 + b2 + c2 - 2ab + 2bc - 2ac ( đpcm )
Áp dụng BĐT Svac - xơ:
\(\frac{1}{a^2+2ab}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)\(=\frac{1^2}{a^2+2ab}+\frac{1^2}{b^2+2ac}+\frac{1^2}{c^2+2ab}\)
\(\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}=\frac{9}{\left(a+b+c\right)^2}\ge9\)(Vì \(a+b+c\le1\))
(Dấu "="\(\Leftrightarrow a=b=c=\frac{1}{3}\))