Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)-3abc+c^3\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[a^2+b^2+c^2-ab-bc-ca\right]\)
\(=0\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
b/
\(a+b+c=0\Rightarrow c=-\left(a+b\right)\Rightarrow c^2=\left(a+b\right)^2\)
\(\Leftrightarrow c^2=a^2+b^2+2ab\)\(\Leftrightarrow a^2+b^2+ab=c^2-ab\)
\(2x^4=\left(a^2+b^2+ab\right)^2+\left(c^2-ab\right)^2\)
\(=a^4+b^4+a^2b^2+2a^2b^2+2a^3b+2ab^3+c^4-2abc^2+a^2b^2\)
\(=a^4+b^4+c^4+\left(4a^2b^2+2a^3b+2ab^3-2abc^2\right)\)
\(=a^4+b^4+c^4+2ab\left(2ab+a^2+b^2-c^2\right)\)
\(=a^4+b^4+c^4+0\)
\(=a^4+b^4+c^4\)
c) \(VT=\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\left(a+b\right)^3+3c\left(a+b\right)\left(a+b+c\right)+c^3-a^3-b^3-c^3\)
\(=a^3+b^3+c^3+3ab\left(a+b\right)+3c\left(a+b\right)\left(a+b+c\right)-a^3-b^3-c^3\)
\(=3\left(a+b\right)\left[ab+c\left(a+b+c\right)\right]\)
\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)
\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\)
d) \(VT=a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=VP\)
I don't now
...............
.................
\(1)\)
\(a)\)\(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)
\(A=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)
\(A=100+99+98+97+...+2+1\)
\(A=\frac{100\left(100+1\right)}{2}\)
\(A=5050\)
\(b)\)\(B=3\left(2^2+1\right)\left(2^4+1\right).....\left(2^{64}+1\right)+1\)
\(B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right).....\left(2^{64}+1\right)+1\)
\(B=\left(2^4-1\right)\left(2^4+1\right).....\left(2^{64}+1\right)+1\)
\(B=\left(2^8+1\right).....\left(2^{64}+1\right)+1\)
\(............\)
\(B=\left(2^{64}-1\right)\left(2^{64}+1\right)+1\)
\(B=2^{128}-1+1\)
\(B=2^{128}\)
Chúc bạn học tốt ~
\(1)\)
\(c)\)\(C=\left(a+b+c\right)^2+\left(a+b-c\right)^2-2\left(a+b\right)^2\)
\(C=\left(a+b\right)^2+2\left(a+b\right)c+c^2+\left(a+b\right)^2-2\left(a+b\right)c+c^2-2\left(a+b\right)^2\)
\(C=2\left(a+b\right)^2+2c^2-2\left(a+b\right)^2\)
\(C=2c^2\)
\(2)\)
\(a)\)\(VP=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(VP=a^3+3a^2b+3ab^2+b^3-3ab\left(a+b\right)\)
\(VP=a^3+3ab\left(a+b\right)+b^3-3ab\left(a+b\right)\)
\(VP=a^3+b^3=VT\) ( đpcm )
\(b)\)\(VT=a^3+b^3+c^3-3abc\)
\(VT=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(VT=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(VT=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)
\(VT=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=VP\) ( đpcm )
Từ đó suy ra :
\(i)\)\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)\(\Rightarrow\)\(a+b+c=0\)
Hoặc \(a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow}a=b=c}\)
Chúc bạn học tốt ~
1) Áp dụng HĐT mở rộng :
\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)(do a + b + c = 0)
\(\Rightarrow a^3+b^3+c^3=3abc\)
2 )Vì a;b;c là độ dài 3 cạch của 1 tam giác nên \(\hept{\begin{cases}a+b>c\\a+c>b\\a+b>c\end{cases}}\)(bđt tam giác)
\(\Rightarrow\frac{c}{a+b}< 1\Rightarrow\frac{c}{a+b}< \frac{2c}{a+b+c}\)
\(\Rightarrow\frac{b}{a+c}< 1\Rightarrow\frac{b}{a+c}< \frac{2b}{a+b+c}\)
\(\Rightarrow\frac{a}{b+c}< 1\Rightarrow\frac{a}{b+c}< \frac{2a}{a+b+c}\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< \frac{2a+2b+2c}{a+b+c}=2\)(đpcm)
3 ) \(x^5+y^5\ge x^4y+xy^4\)
\(\Leftrightarrow x^5+y^5-x^4y-xy^4\ge0\)
\(\Leftrightarrow\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)-xy\left(x^3+y^3\right)\ge0\)
\(\Leftrightarrow\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)-xy\left(x+y\right)\left(x^2-xy+y^2\right)\ge0\)
\(\Leftrightarrow\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4-x^3y+x^2y^2-xy^3\right)\ge0\)
\(\Leftrightarrow\left(x+y\right)\left(x-y\right)^2\left(x^2+y^2\right)\ge0\)(luôn đúng với mọi \(x;y\ne0andx+y\ge0\))
Vậy \(x^5+y^5\ge x^4y+xy^4\)
a) Ta có: (a + b + c + d)(a - b - c +d )=( (a + d) + (b + c) )( (a + d) - (b + c) )
=(a + d )2 - (b +c )2 (1)
(a - b + c - d)(a + b - c - d)=(a - d)2 - (b - c)2 (2)
Từ (1) và (2) => a2 + 2ad + d2 - b2 - 2bc - c2=a2 - 2ad + d2 - b2 + 2bc - c2
4ad=4bc => ad=bc <=> \(\frac{a}{c}=\frac{b}{d}\) (đpcm)
Ta có:\(x+y=a\)
=>\(x^2+2xy+y^2=a^2\)
=>\(x^2+y^2=a^2-2xy=a^2-2b\left(đpcm\right)\)
Ta lại có:\(x^3+3x^2y+3xy^2+y^3=a^3\)
=>\(x^3+y^3+3xy\left(x+y\right)=a^3\)
=>\(x^3+y^3=a^3-3xy\left(x+y\right)=a^3-3ab\left(đpcm\right)\)
b)\(a+b+c=0\) =>\(a^3+b^3+c^3+3a^2b+3ab^2+3b^2c+3bc^2+3c^2a+3a^2c+6abc=0\) =>\(a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\) =>\(a^3+b^3+c^3+3\left(-a\right)\left(-b\right)\left(-c\right)=0\) =>\(a^3+b^3+c^3=3abc\left(đpcm\right)\)
Tại sao lại có +6abc vậy bạn , ở câu b) đó