K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2017

\(VT=\left(m-a\right)^2+\left(2m-b\right)^2+\left(3m-c\right)^2\)

\(=m^2-2am+a^2+4m^2-4bm+9m^2-6mc+c^2\)

\(=14m^2-2m\left(a+2b+3c\right)+a^2+b^2+c^2\)

\(=14m^2-14m^2+a^2+b^2+c^2\) ( do \(a+2b+3c=7m\) )

\(=a^2+b^2+c^2=VP\)

\(\Rightarrowđpcm\)

17 tháng 7 2017

Ta có: \(VT=\left(m-a\right)^2+\left(2m-b\right)^2+\left(3m-c\right)^2\)

\(=m^2-2ma+a^2+4m^2-4mb+b^2+9m^2-6mc+c^2\)

\(=m^2-2ma+4m^2-4mb+9m^2-6mc+a^2+b^2+c^2\)

\(=m\left(14m-2a-4b-6c\right)+a^2+b^2+c^2\)

\(=-2m\left(-7m+a+2b+6c\right)+a^2+b^2+c^2\)

\(=-2m\left(-7m+7m\right)+a^2+b^2+c^2\)

\(=a^2+b^2+c^2=VP\)

Vậy (m - a)2 + (2m - b)2 + (3m - c)2 = a2 + b2 + c2.

26 tháng 8 2019

lên gg sợt cách chứng minh bất đẳng thức buniakovsky nhé 

8 tháng 9 2019

Phương Trình Hai Ẩn, bạn ơi nếu thế mk hỏi trên đấy r, chứ k mất thời gian hỏi ở đây đâu bạn

AH
Akai Haruma
Giáo viên
26 tháng 8 2019

Lời giải:

Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=m\Rightarrow x=am; y=bm; z=cm\)

Khi đó:

\((x^2+2y^2+3z^2)(a^2+2b^2+3c^2)=[(am)^2+2(bm)^2+3(cm)^2](a^2+2b^2+3c^2)\)

\(=m^2(a^2+2b^2+3c^2)^2(1)\)

Và:

\((ax+2by+3cz)^2=(a.am+2b.bm+3c.cm)^2=[m(a^2+2b^2+3c^2)]^2\)

\(=m^2(a^2+2b^2+3c^2)^2(2)\)

Từ (1) và (2) ta có đpcm.

26 tháng 8 2019

@Akai Haruma ???

Ta có:\(x+y=a\)

=>\(x^2+2xy+y^2=a^2\)

=>\(x^2+y^2=a^2-2xy=a^2-2b\left(đpcm\right)\)

Ta lại có:\(x^3+3x^2y+3xy^2+y^3=a^3\)

=>\(x^3+y^3+3xy\left(x+y\right)=a^3\)

=>\(x^3+y^3=a^3-3xy\left(x+y\right)=a^3-3ab\left(đpcm\right)\)

b)\(a+b+c=0\) =>\(a^3+b^3+c^3+3a^2b+3ab^2+3b^2c+3bc^2+3c^2a+3a^2c+6abc=0\) =>\(a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\) =>\(a^3+b^3+c^3+3\left(-a\right)\left(-b\right)\left(-c\right)=0\) =>\(a^3+b^3+c^3=3abc\left(đpcm\right)\)

10 tháng 9 2017

Tại sao lại có +6abc vậy bạn , ở câu b) đó hiuhiu

9 tháng 1 2018

link: [Toán 8] Chứng mih $a^2+b^2+c^2\ge 14$ | Diễn đàn HOCMAI - Cộng đồng học tập lớn nhất Việt Nam

25 tháng 8 2016

a) a3+b3+a2c+b2c-abc

= (a+b)(a2-ab+b2)+c(a2+b2)-abc

=(a+b) [ (a+b)2-3ab]+c.[(a+b)2-2ab]-abc

=(a+b)(a+b)2-3ab(a+b)+c(a+b)2-3abc

=(a+b)2(a+b+c)-3ab(a+b+c)

=(a+b)2.0-3ab.0

=0

b) ax+ay+2x+2y+4

=a(x+y)+2(x+y)+4

=(x+y)(a+2)+4

=(a-2)(a+2)+4

=a2-4+4

=a2

c) A=1+x+x2+...+x49=>Ax=x+x2+x3+...+x50

                                           - A=1+x+x2+...+x49

                               ---> Ax-A=x50-1

d)(a+b)(a+c)+(c+a)(c+b)

=a2+ac+ab+bc+c2+bc+ac+ab

=a2+c2+2ac+2ab+2bc

=2b2+2bc+2ac+2ab

=2b(b+c)+2a(b+c)

=2b(b+c)(b+a)