\(\frac{2n}{n-2}\) ( n thuộc Z ; n khác 2) . Hãy tìm số nguyên n để A là số ngu...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2016

A=(2n-4)/(n-2)+4/(n-2)=2+4/(n-2)

De A co gia tri nguyen thi n-2 la U(4)

Suy ra n-2 co the nhan cac gia tri -4;-2;-1;1;2;4

Suy ra n co the nhan cac gia tri -2;0;1;3;4;6(thoa man n thuoc Z;n khac 2)

Bài 2: 

a: Để E là số nguyên thì \(3n+5⋮n+7\)

\(\Leftrightarrow3n+21-16⋮n+7\)

\(\Leftrightarrow n+7\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)

hay \(n\in\left\{-6;-8;-5;-9;-3;-11;1;-15;9;-23\right\}\)

b: Để F là số nguyên thì \(2n+9⋮n-5\)

\(\Leftrightarrow2n-10+19⋮n-5\)

\(\Leftrightarrow n-5\in\left\{1;-1;19;-19\right\}\)

hay \(n\in\left\{6;4;29;-14\right\}\)

27 tháng 4 2018

A = \(\frac{n+2}{n-5}\)\(\frac{n-5+7}{n-5}\)\(1+\frac{7}{n-5}\)

Để \(1+\frac{7}{n-5}\)là số nguyên \(\Leftrightarrow\frac{7}{n-5}\)là số nguyên.

=> n - 5 \(\in\)Ư(7) = {-7; -1; 1; 7}

=> n \(\in\){-2; 4; 6; 12}

Vậy n \(\in\){-2; 4; 6; 12}

~~~
#Sunrise

27 tháng 4 2018

\(\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=\frac{n-5}{n-5}+\frac{7}{n-5}=1+\frac{7}{n-5}\)

Để A là số nguyên thì n-5 phải thuộc Ư(7)={-7;-1;1;7}

Nếu n-5=-7 thì n=-2

Nếu n-5=-1 thì n=4

Nếu n-5=1 thì n=6

Nếu n-5=7 thì n=12

13 tháng 2 2018

Ta có: \(A=\frac{2n}{n-2}\Rightarrow n>0\)

 Lập luận

+ n lớn hơn không vì nếu n nhỏ hơn 0 thì \(\frac{2n}{n-2}\)sẽ trở thành \(\frac{2\left(-n\right)}{n-2}\) (vô lý)

=> n thuộc tập N*

10 tháng 8 2017

a, (5n+2)9 = (2n+7)7

  45n+18=14n+49

  31n=31

  n=1

28 tháng 3 2018

a) Để \(A=\frac{7}{9}\Leftrightarrow\frac{5n+2}{2n+7}=\frac{7}{9}\)

\(\Leftrightarrow9\left(5n+2\right)=7\left(2n+7\right)\)

\(\Leftrightarrow45n+18=14n+49\)

\(\Leftrightarrow31n=31\)

\(\Leftrightarrow n=1\)

n) Để A nguyên thì \(\frac{5n+2}{2n+7}\in Z\)

Nếu A nguyên thì 2A cũng nguyên. Vậy ta tìm n nguyên để 2A nguyên sau đó thử lại để chọn các giá trị đúng của n.

\(2A=\frac{10n+4}{2n+7}=\frac{5\left(2n+7\right)-31}{2n+7}=5-\frac{31}{2n+7}\)

Để 2A nguyên thì \(2n+7\inƯ\left(31\right)=\left\{\pm1;\pm31\right\}\)

Ta có bảng:

2n + 71-131-31
n-3-412-19
KLTMTMTMTM

 

Vậy ta có \(n\in\left\{-1;-4;12;-19\right\}\)

c

21 tháng 5 2015

ta có : A= \(\frac{2n+2}{2n-4}\)=\(\frac{2n-4+6}{2n-4}=\frac{2n-4}{2n-4}+\frac{6}{2n-4}\)

               =  \(1+\frac{6}{2n-4}\)

Để A là số nguyên thì : \(1+\frac{6}{2n-4}\)là số nguyên

=> 2n - 4 \(\in\) Ư( 6 )={ 1 ; - 1 ; 2 ; - 2 ; 3 ; - 3 ; 6 ; - 6}

2n - 4 =1                    2n -4 = - 1                   2n - 4 = 2                        2n - 4 = - 2

n        =\(\frac{5}{2}\)                  n      = \(\frac{3}{2}\)                    n      = 3                          n      = 2

2n - 4 = 3                    2n - 4 = -3                   2n - 4 = 6                       2n -4 = -6

  n      = \(\frac{7}{2}\)                  n       = \(\frac{1}{2}\)                   n      = 5                         n     = -1

mà n là số nguyên nên : 

n = {3; 2 ;5 ; -1}

 

21 tháng 5 2015

\(\frac{2n+2}{2n-4}\)=\(\frac{2n-4+6}{2n-4}\)=\(1+\frac{6}{2n-4}\)

Để A nguyên thì \(\frac{6}{2n-4}\) nguyên 

=>\(2n+6\inƯ\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

=>\(n\in\left\{-2;-4;0;-6\right\}\)

 

13 tháng 3 2018

Ta có: theo bài ra \(\frac{2n+3}{4n+8}\)\(\frac{1}{4}\)<=> 4(2n+3) = 4n+8 <=> 8n+12 = 4n+8 <=> 8n-4n = 8-12 <=> 4n = -1 <=> n = -1

         gọi d là ước chung lớn nhất của 2n+3 và 4n+8.

suy ra ((4n+8) - (2n+3)) chia hết cho d

((4n+8) - (2n+3) + (2n+3)) chia hết cho d

(4n-8 - 2n-3 - 2n-3) chia hết cho d

2 chia hết cho d, suy ra d nhận giá trị 1;2. Mà d không thể bằng 2 (do 2n+3 lẻ với mọi số tự nhiên) nên d = 1. Vậy phân số đã cho tối giản.