Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2: chia 10n cho 5n-3 như bình thường ta được dư là 6
Để A có giá trị nguyên thì \(10n⋮5n-3\) Do đó 6 phai chia hết cho 3n+2
<= >5n-3\(\in u\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\\\)
Lập bảng
5n-3= | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
n= | -0.6 | 0 | 0.2 | 0.4 | 0.8 | 1 | 1.2 | 1.8 |
Bài 2:
a) \(A=\frac{10n}{5n-3}=\frac{2\left(5n-3\right)+6}{5n-3}=2+\frac{6}{5n-3}\)
Vậy để A nguyên thì \(5n-3\inƯ\left(6\right)\)
Mà Ư(6)={1;-1;2;-2;3;-3;6;-6}
=>5n-3={1;-1;2;-2;3;-3;6;-6}
Ta có bảng sau:
5n-3 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | \(\frac{4}{5}\) | \(\frac{2}{5}\) | 1 | \(\frac{1}{5}\) | \(\frac{6}{5}\) | 0 | \(\frac{9}{5}\) | -\(\frac{3}{5}\) |
Vậy \(x=\left\{\frac{4}{5};\frac{2}{5};1;\frac{1}{5};\frac{6}{5};0;\frac{9}{5};-\frac{3}{5}\right\}\) thì A nguyên
1) Để phân số \(\frac{14n+3}{21n+5}\) là PSTG thì
ƯC(14n+3, 21n+5)={-1,1}
Gọi d là UC của 14n+3 và 21n+5
⇒14n+3⋮d
21n+5⋮d
⇒3(14n+3)⋮d
2(21n+5)⋮d
⇒42n+9⋮d
42n+10⋮d
⇒42n+9-(42n+10)⋮d
⇒42n+9-42n-10⋮d
⇒-1⋮d
⇒d={1, -1)
⇒ƯC(14n+3, 21n+5)={-1,1}
Vậy phân số................
2)\(\text({\frac{1}{4}.x+\frac{3}{4}.x})^{2}\)=\(\frac{5}{6}\)
⇒\(\text((\frac{1}{4}+\frac{3}{4}).x)^2=\frac{5}{6}\)
⇒\(\text{(1x)}^2\)=\(\frac{5}{6}\)
⇒x=....(mình ko tính dc)
Vậy x∈ϕ
3) A=\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{899}{900}\)
=\(\frac{3.8.15...899}{4.9.16...900}\)
=\(\frac{1.3.2.4.3.5...29.31}{2.2.3.3.4.4...30.30}\)
=\(\frac{1.2.3...29}{2.3.4...30}.\frac{3.4.5....31}{2.3.4...30}\)
=\(\frac{1}{30}.\frac{31}{2}\)
=\(\frac{31}{60}\)
gọi UCLN ( 14n+ 3 ; 21n +5 ) là d
=> 14n+ 3⋮d và 21n +5⋮d
=> 42n + 9⋮d và 42n + 10⋮d
=> 42n + 10 - (42n + 9) ⋮ d
=> 42n + 10 - 42n - 9⋮ d
=> 1⋮ d
=> p/s ...là phân số tối giản
Bài 1:
Vì n nguyên nên để A nhận giá trị nguyên thì :
\(n+3⋮n-5\\ \Leftrightarrow n-5+8⋮n-5\\ \Rightarrow8⋮n-5\\ \Rightarrow n-5\in\left\{-1;1;-2;2;-4;4;-8;8\right\}\\ \Rightarrow n\in\left\{4;6;3;7;1;9;-3;13\right\}\\ Vậy...\)
Bài 3;
Gọi \(UCLN_{\left(5n+1,20n+3\right)}=d\)
\(\Rightarrow\left\{{}\begin{matrix}5n+1⋮d\\20n+3⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}20n+4⋮d\\20n+3⋮d\end{matrix}\right.\\ \Rightarrow\left(20n+4\right)-\left(20n+3\right)⋮d\\ \Leftrightarrow1⋮d\\ \Rightarrow d\in\left\{-1;1\right\}\)
\(UCLN_{\left(5n+1,20n+3\right)}=1\\ \Rightarrow Phânsốđãchotốigiản\\ \RightarrowĐpcm\)
\(1.\)Để A nguyên thì n+3⋮n−5 (1)
Vì n-5⋮n-5 (2)
Từ (1) và (2) ⇒ n+3-n+5⋮n-5
⇒ 8⋮n-5
⇒ n-5 ∈ Ư(8) = \(\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
⇒ n∈\(\left\{6;4;7;3;9;1;13;-3\right\}\)
Vậy n∈\(\left\{6;4;7;3;9;1;13;-3\right\}\)thì A là số nguyên
Bài 2:
a: Để E là số nguyên thì \(3n+5⋮n+7\)
\(\Leftrightarrow3n+21-16⋮n+7\)
\(\Leftrightarrow n+7\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
hay \(n\in\left\{-6;-8;-5;-9;-3;-11;1;-15;9;-23\right\}\)
b: Để F là số nguyên thì \(2n+9⋮n-5\)
\(\Leftrightarrow2n-10+19⋮n-5\)
\(\Leftrightarrow n-5\in\left\{1;-1;19;-19\right\}\)
hay \(n\in\left\{6;4;29;-14\right\}\)