K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2019

Bài 1:

Vì n nguyên nên để A nhận giá trị nguyên thì :

\(n+3⋮n-5\\ \Leftrightarrow n-5+8⋮n-5\\ \Rightarrow8⋮n-5\\ \Rightarrow n-5\in\left\{-1;1;-2;2;-4;4;-8;8\right\}\\ \Rightarrow n\in\left\{4;6;3;7;1;9;-3;13\right\}\\ Vậy...\)

Bài 3;

Gọi \(UCLN_{\left(5n+1,20n+3\right)}=d\)

\(\Rightarrow\left\{{}\begin{matrix}5n+1⋮d\\20n+3⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}20n+4⋮d\\20n+3⋮d\end{matrix}\right.\\ \Rightarrow\left(20n+4\right)-\left(20n+3\right)⋮d\\ \Leftrightarrow1⋮d\\ \Rightarrow d\in\left\{-1;1\right\}\)

\(UCLN_{\left(5n+1,20n+3\right)}=1\\ \Rightarrow Phânsốđãchotốigiản\\ \RightarrowĐpcm\)

14 tháng 4 2019

\(1.\)Để A nguyên thì n+3⋮n−5 (1)

Vì n-5⋮n-5 (2)

Từ (1) và (2) ⇒ n+3-n+5⋮n-5

⇒ 8⋮n-5

⇒ n-5 ∈ Ư(8) = \(\left\{1;-1;2;-2;4;-4;8;-8\right\}\)

⇒ n∈\(\left\{6;4;7;3;9;1;13;-3\right\}\)

Vậy n∈\(\left\{6;4;7;3;9;1;13;-3\right\}\)thì A là số nguyên

19 tháng 4 2018

a) ta có:

\(\frac{n+1}{2n+3}\)là phân số tối giản thì:

\(\left(n+1;2n+3\right)=d\)

Điều Kiện;d thuộc N, d>0

=>\(\hept{\begin{cases}2n+3:d\\n+1:d\end{cases}}=>\hept{\begin{cases}2n+3:d\\2n+2:d\end{cases}}\)

=>2n+3-(2n+2):d

2n+3-2n-2:d

hay 1:d

=>d=1

Vỵ d=1 thì.....

19 tháng 4 2018

Bài 2 :

Để A = (n+2) : (n-5) là số nguyên thì n+2 phải chia hết cho n-5

Mà n-5 chia hết cho n-5

=> (n+2) - (n-5) chia hết cho n-5

=> (n-n) + (2+5) chia hết cho n-5

=> 7 chia hết cho n-5

=> n-5 thuộc Ư(5) = { 1 : -1 ; 7 ; -7 }

Ta có bảng giá trị

n-51-17-7
n6412-2
A8-620
KLTMĐKTMĐKTMĐKTMĐK

Vậy với n thuộc { -2 ; 4 ; 6 ; 12 } thì A là số nguyên

 

1 tháng 5 2019

\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)

\(\Rightarrow M< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}\)

\(\Rightarrow M< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\)

\(\Rightarrow M< 1-\frac{1}{99}< 1\)

Dễ thấy M > 0 nên 0 < M < 1

Vậy M không là số tự nhiên.

1 tháng 5 2019

\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)

\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\) (50 số hạng \(\frac{1}{100}\))

\(\Rightarrow S>\frac{1}{100}.50=\frac{1}{2}\)

Vậy \(S>\frac{1}{2}\left(đpcm\right)\)

4 tháng 3 2019

Bài 1 : \(\frac{-4}{8}=\frac{x}{-10}=\frac{-7}{y}=\frac{z}{-24}\)

* Ta có : \(\frac{-4}{8}=\frac{x}{-10}\)

\(\Rightarrow(-4)(-10)=x\cdot8\)

\(\Rightarrow x=\frac{(-4)\cdot(-10)}{8}=5\)

* Ta có : \(\frac{-4}{8}=\frac{-7}{y}\)

\(\Rightarrow-4\cdot y=(-7)\cdot8\)

\(\Rightarrow-4\cdot y=-56\)

\(\Rightarrow y=(-56):(-4)=14\)

* Ta có : \(\frac{-4}{8}=\frac{z}{-24}\)

\(\Rightarrow(-4)\cdot(-24)=z\cdot8\)

\(\Rightarrow96=z\cdot8\)

\(\Rightarrow z=96:8=12\)

Vậy : ...

P/S : Lần sau nhớ đăng 1 hay 2 bài thôi chứ nhiều quá làm sao hết

4 tháng 3 2019

\(\frac{-4}{8}=\frac{x}{-10}=\frac{-7}{y}=\frac{z}{-24}\)

\(\text{ Ta có : }\frac{-4}{8}=\frac{-1}{2};\frac{x}{-10}=\frac{-x}{10};\frac{z}{-24}=\frac{-z}{24}\)

\(\text{+) }\frac{-1}{2}=\frac{-x}{10}\)

\(\Leftrightarrow\left(-1\right).10=2.\left(-x\right)\)

\(\Leftrightarrow-x=\frac{\left(-1\right).10}{2}\)

\(\Leftrightarrow-x=-5\)

\(\Leftrightarrow x=5\)

\(\text{+) }\frac{-1}{2}=\frac{-7}{y}\)

\(\Leftrightarrow\left(-1\right).y=2.\left(-7\right)\)

\(\Leftrightarrow y=\frac{2.\left(-7\right)}{-1}\)

\(\Leftrightarrow y=14\)

\(\text{+) }\frac{-1}{2}=\frac{-z}{24}\)

\(\Leftrightarrow\left(-1\right).24=2.\left(-z\right)\)

\(\Leftrightarrow-z=\frac{\left(-1\right).24}{2}\)

\(\Leftrightarrow-z=-12\)

\(\Leftrightarrow z=12\)

1 tháng 8 2018

LẠM DỤNG QUÁ NHIỀU

17 tháng 2 2020

Mình đang cần gấp.Các bạn giúp nha

8 tháng 3 2021

Mình chỉ làm được bài một thôi:

BÀI 1:                                                                                Giải

Gọi ƯCLN(a;b)=d (d thuộc N*)

=> a chia hết cho d ; b chia hết cho d

=> a=dx ; b=dy  (x;y thuộc N , ƯCLN(x,y)=1)

Ta có : BCNN(a;b) . ƯCLN(a;b)=a.b

=> BCNN(a;b) . d=dx.dy

=> BCNN(a;b)=\(\frac{dx.dy}{d}\)

=> BCNN(a;b)=dxy

mà BCNN(a;b) + ƯCLN(a;b)=15

=> dxy + d=15

=> d(xy+1)=15=1.15=15.1=3.5=5.3(vì x; y ; d là số tự nhiên)

TH 1: d=1;xy+1=15

=> xy=14 mà ƯCLN(a;b)=1

Ta có bảng sau:

x11427
y14172
a11427
b14172

TH2: d=15; xy+1=1

=> xy=0(vô lý vì ƯCLN(x;y)=1)

TH3: d=3;xy+1=5

=>xy=4

mà ƯCLN(x;y)=1

TA có bảng sau:

x14
y41
a312
b123

TH4:d=5;xy+1=3

=> xy = 2

Ta có bảng sau:

x12
y21
a510
b105

.Vậy (a;b) thuộc {(1;14);(14;1);(2;7);(7;2);(3;12);(12;3);(5;10);(10;5)}

Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìmgiá trị lớn nhất đó.Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn...
Đọc tiếp

Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.

Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìm

giá trị lớn nhất đó.
Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.
Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn nhất.
Bài tập 7. Tìm giá trị nhỏ nhất của của biểu thức sau: A= \(\frac{6\cdot n-1}{3\cdot n-2}\) (với n là số nguyên )

Bài tập 8: cho phân số A= \(\frac{n+1}{n-3}\) . Tìm n để có giá trị lớn nhất.
Bài tập 9: ho phân số: p= \(\frac{6\cdot n+5}{3\cdot n+2}\) (n \(\in\)  N Với giá trị nào của n thì phân số p
có giá trị lớn nhất? tìm giá trị lớn nhất đó.

0