Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để A thuộc Z
=>n+2 chia hết n-5
=>n-5+7 chia hết n-5
=>7 chia hết n-5
=>n-5 thuộc {1,-1,7,-7}
=>n thuộc {6,4,12,-2}
mk nhanh nhất nhé
Ta có \(A=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=\frac{n-5}{n\cdot5}+\frac{7}{n-5}=1+\frac{7}{n-5}\)
Để \(A\in Z\Rightarrow\frac{7}{n-5}\in Z\) \(\Rightarrow\) 7 chia hết cho n-5
\(\Rightarrow\left(n-5\right)\in\text{Ư}\left(7\right)=\left\{-7;-1;1;7\right\}\)
n-5 | -7 | -1 | 1 | 7 |
n | -2 | 4 | 6 | 12 |
TM | TM | TM | TM |
Vậy để A thuộc Z thì \(x\in\left\{-2;4;6;12\right\}\)
Đề bài có chút sai xót nha bn, phải là tìm n để A thuộc Z
Để A nguyên thì n + 2 chia hết cho n - 5
=> n - 5 + 7 chia hết cho n - 5
Do n - 5 chia hết cho n - 5 => 7 chia hết cho n - 5
=> \(n-5\in\left\{1;-1;7;-7\right\}\)
=> \(n\in\left\{6;4;12;-2\right\}\)
a. Để A có giá trị của số nguyên thì:
n-5 chia hết cho n+1
<=> n+1-6 chia hết cho n+1
<=> 6 chia hết cho n+1 (vì n+1 chia hết cho n+1)
Hay n+1 thuộc ước của 6 ={1;-1;2;-2;3;-3;6;-6}
Ta có bảng sau:
n+1 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | 0 | -2 | 1 | -3 | 2 | -4 | 5 | -7 |
\(A=\frac{n-5}{n+1}\) | -5(lấy) | 7(lấy) | -2(lấy) | -4(lấy) | -1(lấy) | 3(lấy) | 0(lấy) | 2(lấy) |
Vậy n thuộc{0;-2;1;-3;2;-4;5;-7}
b.Ta có:
\(A=\frac{n-5}{n+1}=\frac{n+1-6}{n+1}=1-\frac{6}{n+1}\)
=> \(A=\frac{n-5}{n+1}\)tối giản <=> \(\frac{6}{n+1}\) tối giản
<=> 6 và n+1 có ước chung là 1
Vì 6 chia hết cho 2;3 và 6 nên n+1 không chia hết cho 2;3 và 6.
Vì n+1 không chia hết cho 3 nên n+1 khác 3.k(k thuộc N*)=> n khác 3.k-1
Vì n+1 không chia hết cho 2 nên n+1 khác 2.m(m thuộc N*)=> n khác 2.m-1
Mà 2x3=6 nên n khác 2.m-1 và 3.k-1 thì A là phân số tối giản.
Vậy n khác 2.m-1 và 3.k-1 thì A là phân số tối giản.
Chúc bạn học tốt nhé!
ột số kí hiệu mình k biết được mong bạn thông cảm nhé!
Bài 2:
a: Để E là số nguyên thì \(3n+5⋮n+7\)
\(\Leftrightarrow3n+21-16⋮n+7\)
\(\Leftrightarrow n+7\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
hay \(n\in\left\{-6;-8;-5;-9;-3;-11;1;-15;9;-23\right\}\)
b: Để F là số nguyên thì \(2n+9⋮n-5\)
\(\Leftrightarrow2n-10+19⋮n-5\)
\(\Leftrightarrow n-5\in\left\{1;-1;19;-19\right\}\)
hay \(n\in\left\{6;4;29;-14\right\}\)
\(A=\frac{n-5}{n+1}\)
Để A có giá trị nguyên
=> n-5 chia hết n+1
=> (n+1)-6 chia hết n+1
=> n+1 \(\in\)Ư (6) = \(\left(\text{±}1;\text{±}2;\text{±}3\text{;±}6\right)\)
Ta có bảng :
n+1 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | 0 | -2 | 1 | -3 | 2 | -4 | 5 | -7 |
Câu b tự làm
a, Để a nguyên thì n-5 chia hết cho n+1
suy ra n-1+6 chia hết cho n-1
Do n-1 chia hết cho n-1 nên 6 chia hết cho n-1
Mà n thuộc Z nên n-1 thuộc Z suy ra n-1 thuộc {1;-1;2;-2;3;-3;6;-6}
suy ra n thuộc {2;0;3;-1;4;-2;7;-5}
Mà n khác -1 nên n thuộc {2;0;3;4;-2;7;-5}
b, Gọi d là ước nguyên tố chung của n-5 và n+1
Suy ra n-5 chia hết cho d, n+1 chia hết cho d
Suy ra (n+1)-(n-5) chia hết cho d
suy ra n+1-n+5 chia hết cho d hay 6 chia hết cho d
Do d nguyên tố nên d thuộc {2;3}
Với d=2 thì n-5 và n+1 chia hết cho 2, n=2k+1(k thuộc Z)
Với d=3 thif n-5 và n+1 chia hết cho 3, n=3k+2(k thuộc Z)
Vây với n khác dạng 2k+1 và 3k+2 (k thuộc Z) thì A tối giản
a, Gọi UCLN(2n+1, 3n+2) là d. Ta có:
2n+1 chia hết cho d=> 6n+3 chia hết cho d
3n+2 chia hết cho d=> 6n+4 chia hết cho d
=> 6n+4 - (6n+3) chia hết cho d
=> 1 chia hết cho d
=>ƯCLN(2n+1,3n+2)=1
=>\(\frac{2n+1}{3n+2}\)tối giản(đpcm)
A = \(\frac{n+2}{n-5}\)= \(\frac{n-5+7}{n-5}\)= \(1+\frac{7}{n-5}\)
Để \(1+\frac{7}{n-5}\)là số nguyên \(\Leftrightarrow\frac{7}{n-5}\)là số nguyên.
=> n - 5 \(\in\)Ư(7) = {-7; -1; 1; 7}
=> n \(\in\){-2; 4; 6; 12}
Vậy n \(\in\){-2; 4; 6; 12}
~~~
#Sunrise
\(\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=\frac{n-5}{n-5}+\frac{7}{n-5}=1+\frac{7}{n-5}\)
Để A là số nguyên thì n-5 phải thuộc Ư(7)={-7;-1;1;7}
Nếu n-5=-7 thì n=-2
Nếu n-5=-1 thì n=4
Nếu n-5=1 thì n=6
Nếu n-5=7 thì n=12