K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2016

a) =1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101 

=1-1/101 

=100/101 

b) =(2/1.3+2/3.5+2/5.7+...+2/99.101).2,5 

=(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101).2,5 

=(1-1/101).2,5

=100/101.2,5 

=250/101 

dấu / là phần nhé. bạn có thể xem bài có dấu phần ở : Câu hỏi của Nguyễn Thị Hoài Anh 

2 tháng 6 2016

A)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

=1-\(\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

=1-\(\frac{1}{101}\)

=\(\frac{100}{101}\)

B) \(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{1}{99.101}\)

=5.(\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\))

=5.\(\frac{2}{2}.\)(\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\))

=5.\(\frac{1}{2}\).(\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{1}{99.101}\))

=5.\(\frac{1}{2}\).(1-\(\frac{1}{3}\)+\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

=5.\(\frac{1}{2}\).(1-\(\frac{1}{101}\))

=\(\frac{5}{2}.\frac{100}{101}=\frac{250}{100}\)

Chúc bạn học tốtleuleu

7 tháng 5 2016

\(a,=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}\)

\(=\frac{100}{101}\)

\(b,=\frac{5}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\left(1-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\frac{100}{101}=\frac{250}{101}\)

7 tháng 5 2016

a,\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}=\frac{2}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)=\frac{2}{2}.\left(\frac{1}{1}-\frac{1}{100}\right)=1.\frac{99}{100}=\frac{99}{100}\)

17 tháng 4 2016

a)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}=\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}\)

\(=\frac{100}{101}\)

b) \(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)

\(=\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)

\(=\frac{5}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}=\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\left(1-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\frac{100}{101}\)

\(=\frac{250}{101}\)

17 tháng 4 2016

a, =\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...+\frac{1}{99}-\frac{1}{101}\)

=1__\(\frac{1}{101}\)

11 tháng 4 2017

mình làm câu 4 nha

Gọi d là ước chung của 2n+1 và 3n+2 (d thuộc N*)

=>(2n+1) : d và (3n+2) : d

=>3.(2n+1) :d và 2.(3n+2): d

=>(6n+3) :d và (6n+4) : d

=> ((6n+4) - (6n+3)) : d

=>1 :d => d=1

Vì d là ước chung của 2n+1/3n+2

mà d =1 => ƯC(2n+1/3n+2) =1

Vậy 2n+1/3n+2 là phân số tối giản

Tick mình nha bạn hiền .

11 tháng 4 2017

câu 5 mình mới nghĩ ra nè ( có gì sai thì bạn sửa lại giúp mình nha)

Ta có : A=\(\dfrac{n+2}{n-5}\)

A=\(\dfrac{n-5+7}{n-5}\)

A=\(\left[\left(n-5\right)+7\right]\) : (n-5)

A= 7 : (n-5)

=> (n-5) thuộc Ư(7)=\(\left\{1;-1;-7;7\right\}\)

Suy ra :

n-5 =1=> n= 6

n-5= -1 =>n=4

n-5=7=>n=12

n-5= -7 =>n= -2

Vậy n = 6 ;4;12;-2

Mấy dấu chia ở câu 4 là dấu chia hết đó nha ( tại mình không biết viết dấu chia hết ).

Tick mình nha bạn hiền.

27 tháng 4 2015

a) \(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(=\left(1-\frac{1}{101}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{99}-\frac{1}{99}\right)=\left(\frac{101}{101}-\frac{1}{101}\right)+0+...+0=\frac{100}{101}\)

b) \(\frac{5}{1\cdot3}+\frac{5}{3\cdot5}+\frac{5}{5\cdot7}+...+\frac{5}{99\cdot101}=2\cdot\frac{1}{2}\left(\frac{5}{1\cdot3}+\frac{5}{3\cdot5}+...+\frac{5}{99\cdot101}\right)\)

\(=5\cdot\frac{1}{2}\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{99\cdot101}\right)=\frac{5}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)\(=\frac{5}{2}\left[\left(1-\frac{1}{101}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+...+\left(\frac{1}{99}-\frac{1}{99}\right)\right]\)

\(=\frac{5}{2}\left[\left(\frac{101}{101}-\frac{1}{101}\right)+0+...+0\right]=\frac{5}{2}\cdot\frac{100}{101}=\frac{5\cdot100}{2\cdot101}=\frac{5\cdot50}{1\cdot101}=\frac{250}{101}\)

Mình ko chắc là đúng đâu, do nhẩm

chúc bạn học tốt!^_^

27 tháng 4 2015

a, =\(\frac{100}{101}\)

10 tháng 7 2015

\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}=1-\frac{1}{101}=\frac{100}{101}\)

\(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}=\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)=\frac{5}{2}.\frac{100}{101}=\frac{250}{101}\)

2 tháng 4 2017

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.100}=\left(1-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{7}\right)+...+\left(\frac{1}{99}-\frac{1}{101}\right)=1-\frac{1}{101}=\frac{100}{101}\)\(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}=\frac{2}{1.3}.\frac{5}{2}+\frac{2}{3.5}.\frac{5}{2}+\frac{2}{5.7}.\frac{5}{2}+...+\frac{2}{99.101}.\frac{5}{2}=\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)=\frac{5}{2}.\frac{100}{101}=\frac{250}{101}\)

11 tháng 5 2018

a,\(\frac{2}{1.3}+...\frac{2}{99.101}\)

\(=\frac{3-1}{1.3}+...+\frac{101-99}{99.101}\)

\(=\frac{3}{1.3}-\frac{1}{1.3}+...+\frac{101}{99.101}-\frac{99}{99.101}\)

\(=\frac{1}{1}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{101}\)

\(=\frac{1}{1}-\frac{1}{101}\)

\(\frac{100}{101}\)

11 tháng 5 2018

Mình cần gấp, ai trả lời nhanh nhất mình k cho

15 tháng 4 2017

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{99.101}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+......+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}\)

\(=\frac{100}{101}\)

14 tháng 8 2017

a)  \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(\frac{2}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)

= 1. \(\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

= 1. \(\left(1-\frac{1}{101}\right)\)

= 1. \(\left(\frac{101}{101}-\frac{1}{101}\right)\)

= 1. \(\frac{100}{101}\)

\(\frac{100}{101}\)

b) \(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)

\(\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)

\(\frac{5}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(\frac{5}{2}.\left(1-\frac{1}{101}\right)\)

\(\frac{5}{2}.\left(\frac{101}{101}-\frac{1}{101}\right)\)

\(\frac{5}{2}.\frac{100}{101}\)

\(\frac{500}{202}\)

4 tháng 5 2016

 nhung ma ko cothoi gian giai

4 tháng 5 2016

\(S1=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{99.101}\)

\(S1=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-....-\frac{1}{101}=\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\)

\(S2=\frac{5}{1.3}+\frac{5}{3.5}+....+\frac{5}{99.101}\)

\(S2=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-.....-\frac{1}{101}\right)=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{101}\right)=\frac{5}{2}\cdot\frac{100}{101}=\frac{250}{101}\)