K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2023

Lỗi đề câu e bạn tự sửa lại nhé.

19 tháng 2 2023
NV
10 tháng 3 2023

Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y};c=\dfrac{1}{z}\Rightarrow xyz=1\) và \(x;y;z>0\)

Gọi biểu thức cần tìm GTNN là P, ta có:

\(P=\dfrac{1}{\dfrac{1}{x^3}\left(\dfrac{1}{y}+\dfrac{1}{z}\right)}+\dfrac{1}{\dfrac{1}{y^3}\left(\dfrac{1}{z}+\dfrac{1}{x}\right)}+\dfrac{1}{\dfrac{1}{z^3}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)}\)

\(=\dfrac{x^3yz}{y+z}+\dfrac{y^3zx}{z+x}+\dfrac{z^3xy}{x+y}=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)

\(P\ge\dfrac{\left(x+y+z\right)^2}{y+z+z+x+x+y}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}\)

\(P_{min}=\dfrac{3}{2}\) khi \(x=y=z=1\) hay \(a=b=c=1\)

HQ
Hà Quang Minh
Giáo viên
10 tháng 9 2023

\({x^2} = {4^2} + {2^2} = 20 \Rightarrow x = 2\sqrt 5 \)

\({y^2} = {5^2} - {4^2} = 9 \Leftrightarrow y = 3\)

\({z^2} = {\left( {\sqrt 5 } \right)^2} + {\left( {2\sqrt 5 } \right)^2} = 25 \Rightarrow z = 5\)

\({t^2} = {1^2} + {2^2} = 5 \Rightarrow t = \sqrt 5 \)

AH
Akai Haruma
Giáo viên
3 tháng 2 2024

Bài 4:

a. Vì $\triangle ABC\sim \triangle A'B'C'$ nên:

$\frac{AB}{A'B'}=\frac{BC}{B'C'}=\frac{AC}{A'C'}(1)$ và $\widehat{ABC}=\widehat{A'B'C'}$

$\frac{DB}{DC}=\frac{D'B'}{D'C}$

$\Rightarrow \frac{BD}{BC}=\frac{D'B'}{B'C'}$

$\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}(2)$

Từ $(1); (2)\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}=\frac{AB}{A'B'}$

Xét tam giác $ABD$ và $A'B'D'$ có:

$\widehat{ABD}=\widehat{ABC}=\widehat{A'B'C'}=\widehat{A'B'D'}$

$\frac{AB}{A'B'}=\frac{BD}{B'D'}$

$\Rightarrow \triangle ABD\sim \triangle A'B'D'$ (c.g.c)

b.

Từ tam giác đồng dạng phần a và (1) suy ra:
$\frac{AD}{A'D'}=\frac{AB}{A'B'}=\frac{BC}{B'C'}$

$\Rightarrow AD.B'C'=BC.A'D'$

 

AH
Akai Haruma
Giáo viên
3 tháng 2 2024

Hình bài 4:

21 tháng 2 2023

Vì MN // BC theo Talet ta có:

\(\dfrac{y}{20}\) =  \(\dfrac{10}{15}\)  = \(\dfrac{x}{12}\) => x = \(\dfrac{10}{15}\) . 12 = 8;   y = \(\dfrac{10}{15}\) . 20 = \(\dfrac{40}{3}\)

 

HQ
Hà Quang Minh
Giáo viên
10 tháng 9 2023

Những tam giác đồng dạng là 

- Tam giác ABC đồng dạng với tam giác EDF với tỉ số đồng dạng là 1

- Tam giác MPN đồng dạng với tam giác ABC với tỉ số đồng dạng là \(\frac{1}{2}\)

- Tam giác MPN đồng dạng với tam giác EDF với tỉ số đồng dạng là \(\frac{1}{2}\)

5 tháng 10 2023

a/

Ta có

IA=IC (gt); IM=IK (gt) => AMCK là hình bình hành (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

Ta có

MB=MC (gt); IA=IC (gt) => MI là đường trung bình của tg ABC => MI//AB

Mà \(AB\perp AC\) 

\(\Rightarrow MI\perp AC\Rightarrow MK\perp AC\)

=> AMCK là hình thoi (Hình bình hành có 2 đường chéo vuông góc là hình thoi)

b/

Ta có

MI//AB (cmt) => MK//AB

AK//MC (cạnh đối hbh AMCK) => AK//MB

=> AKMB là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

c/

Để AMCK là hình vuông \(\Rightarrow AM\perp BC\) => AM là đường cao của tg ABC

Mà AM là trung tuyến của tg ABC (gt)

=> ABC cân tại A (Tam giác có đường cao đồng thời là đường trung tuyến là tg cân)

=> Để AMCK là hình vuông thì tg ABC vuông cân tại A

 

22 tháng 11 2023

a) Tứ giác ����AMCK có hai đường chéo ��,��AC,MK cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.

Δ���ΔABC vuông tại A có ��AM là đường trung tuyến nên ��=��=��AM=MC=MB.

Vậy hình bình hành ����AMCK có ��=��AM=MC nên là hình thoi.

b) Vì ����AMCK là hình thoi nên ��AK // ��BM và ��=��=��AK=MC=BM.

Tứ giác ����AKMB có ��AK // ��,��=��BM,AK=BM nên là hình bình hành.

c) Để ����AMCK là hình vuông thì cần có một góc vuông hay ��⊥��AMMC.

Khi đó Δ���ΔABC có ��AM vừa là đường cao vừa là đường trung tuyến nên cân tại A.

Vậy Δ���ΔABC vuông cân tại A thì ����AMCK là hình vuông.

22 tháng 11 2023

a) Vì ��=2��AB=2BC suy ra ��=��2=��BC= AB/2=AD

ABCD là hình chữ nhật nên AB=DC suy ra 1/2AB=1/2DC do đó AI=DK=AD

Tứ giác AIKD có AI//DK, AI=DK nên tứ giác AIKD là hình bình hành 

Lại có AD=AI nên AIKD là hình thoi

Mà góc IAD= 90 độ do đó AIKD là hình vuông

Vậy tứ giác AIKD là hình vuông

Chứng minh tương tự cho tứ giác BIKC

Vậy tứ gáic BIKC là hình vuông

b) VÌ AIKD là hình vuông nên DI là tia phân giác góc ADK nên góc IDK = 45 độ

Tương tự góc ICK = 45 độ

Tam giác IDC cân có góc DIC = 90 độ nên là tam gaic vuông cân 

Vậy tam giác IDC là tam gáic  vuông cân

c) Vì AIKD, BCKI là các hình vuông nên hai đường chéo bằng nhau và cắt  nhau tại trung điểm mỗi đường nên SI=SK=DI/2 và IR=RK=IC/2

 =>ISKR là hình thoi

Lại có góc DIC= 90 độ nên ISKR là hình vuông

Vậy ISKR là hình vuông

 

 

5 tháng 10 2023

\(AC\perp Oy\) (gt); \(Ox\perp Oy\) (gt) => AC//Oy => AC//OB

C/m tương tự có AB//OC

=> OBAC là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Mà \(\widehat{xOy}=90^o\)

=> OBAC là HCN

Ta có

AC=AB (Tính chất đường phân giác)

=> OBAC là hình vuông

21 tháng 11 2023

Tứ giác ����OBAC có ba góc vuông: góc B= góc C = góc BOC= 90 độ �^=�^=���^=90∘==

Nên ����OBAC là hình chữ nhật.

Mà A nằm trên tia phân giác ��OM suy ra ��=��AB=AC.

Khi đó ����OBAC là hình vuông.

 
21 tháng 11 2023

a) Δ��� Tam giác ABC vuông cân nên góc B= góc C = 45 độ

Tam giácBHE vuông tại H có góc BEH + góc B = 90 độ

Suy ra góc BEH = 90 độ - 45 độ = 45 độ nên góc B= góc BEH = 45 độ

Vậy tam giác BEH vuông tại H

b) Chứng minh tương tự như câu a ta được tam giác CFG vuông tại G nên GF=GC và HB=HE

Lại có BH=HG=GC suy ra EH=HG=GF và EH//FG ( cùng vuông góc với BC)

Tứ giác EFGH có EH//FG, EH=FG

=>tứ giác EFGH là hình bình hành 

Xét hình bình hành có một góc vuông là góc H nên là hình chữ nhật

Mà hình chữ nhật có hai cạnh kề bằng nhau là EH=HG nên là hình vuông

Vậy EFGH là hình vuông

 

21 tháng 11 2023

a) Δ���ΔABC vuông cân nên �^=�^=45∘.B=C=45.

Δ���ΔBHE vuông tại H có ���^+�^=90∘BEH+B=90

Suy ra ���^=90∘−45∘=45∘BEH=9045=45 nên �^=���^=45∘B=BEH=45.

Vậy Δ���ΔBEH vuông cân tại �.H.

b) Chứng minh tương tự câu a ta được Δ���ΔCFG vuông cân tại G nên ��=��GF=GC và ��=��HB=HE

Mặt khác ��=��=��BH=HG=GC suy ra ��=��=��EH=HG=GF và ��EH // ��FG (cùng vuông góc với ��)BC)

Tứ giác ����EFGH có ��EH // ��,��=��FG,EH=FG nên là hình bình hành.

Hình bình hành ����EFGH có một góc vuông �^H nên là hình chữ nhật

Hình chữ nhật ����EFGH có hai cạnh kề bằng nhau ��=��EH=HG nên là hình vuông.

20 tháng 11 2023

a)  ����ABCD là hình bình hành.

b)  �,�,�P,N,Q thẳng hàng.

c) Δ���ΔABC cần thêm điều kiện gì để tứ giác ����ABCD là hình vuông.