Thân Nguyễn Trí Thành

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Thân Nguyễn Trí Thành
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

a) Tứ giác ���� có �^=�^=�^=90∘ nên là hình chữ nhật.

b) Vì ���� là hình chữ nhật nên �� // ��

Xét Δ��� và Δ��� có:

     �^=�^=90∘

     ��=�� ( giả thiết)

     ���^=�^ (đồng vị)

Vậy Δ���=Δ��� (cạnh huyền - góc nhọn)

Suy ra ��=�� (hai cạnh tương ứng) mà ��=�� nên ��=2�� và ��=2��.

Do đó ��=��.

Tứ giác ���� có �� // ��,��=�� nên là hình bình hành.

Do đó, hai đường chéo ��,�� cắt nhau tại trung điểm  của mỗi đường hay �,�,� thẳng hàng.

c) Để hình chữ nhật ���� là hình vuông thì ��=�� (1)

Mà ��=12�� và ��=��=�� nên ��=12�� (2)

Từ (1),(2) suy ra ��=��.

Vậy Δ��� cần thêm điều kiên cân tại .

a) Tứ giác ���� có hai đường chéo ��,�� cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.

Δ��� vuông tại  có �� là đường trung tuyến nên ��=��=��.

Vậy hình bình hành ���� có ��=�� nên là hình thoi.

b) Vì ���� là hình thoi nên �� // �� và ��=��=��.

Tứ giác ���� có �� // ��,��=�� nên là hình bình hành.

c) Để ���� là hình vuông thì cần có một góc vuông hay ��⊥��.

Khi đó Δ��� có �� vừa là đường cao vừa là đường trung tuyến nên cân tại .

Vậy Δ��� vuông cân tại  thì ���� là hình vuông.

a) Δ��� vuông cân nên �^=�^=45∘.

Δ��� vuông tại  có ���^+�^=90∘

Suy ra ���^=90∘−45∘=45∘ nên �^=���^=45∘.

Vậy Δ��� vuông cân tại �.

b) Chứng minh tương tự câu a ta được Δ��� vuông cân tại  nên ��=�� và ��=��

Mặt khác ��=��=�� suy ra ��=��=�� và �� // �� (cùng vuông góc với ��)

Tứ giác ���� có �� // ��,��=�� nên là hình bình hành.

Hình bình hành ���� có một góc vuông �^ nên là hình chữ nhật

Hình chữ nhật ���� có hai cạnh kề bằng nhau ��=�� nên là hình vuông.

Tứ giác ���� có ba góc vuông �^=�^=���^=90∘

Nên ���� là hình chữ nhật.

Mà  nằm trên tia phân giác �� suy ra ��=��.

Khi đó ���� là hình vuông.

a) ���� là hình bình hành nên hai đường chéo ��,�� cắt nhau tại  là trung điểm của mỗi đường.

Xét Δ��� và Δ��� có:

     ��=�� ( giả thiết)

     ���^=���^ (so le trong)

     ���^=���^ (đối đỉnh)

Vậy Δ���=Δ��� (g.c.g)

Suy ra ��=�� (hai cạnh tương ứng)

Chứng minh tương tự Δ���=Δ��� (g.c.g) suy ra ��=�� (hai cạnh tương ứng)

���� có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.

b) Hình bình hành ���� có hai đường chéo ��⊥�� nên là hình thoi

Ta có ���� là hình thoi nên ��⊥�� tại trung điểm của mỗi đường nên �� là trung trực của ��

Suy ra ��=��,��=�� (1)

Và �� là trung trực của �� suy ra ��=��,��=�� (2)

Từ (1),(2) suy ra ��=��=��=�� nên ���� là hình thoi