Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh vế phải này ; phương pháp đại số nha
\(S_{ABC}=\frac{AB.AC}{2}=1\Rightarrow AB.AC=2\)
Theo pytago Tam giác ABC vuông tại A \(\Rightarrow AB^2+AC^2=BC^2\)
BĐT cần cm : \(BC\le\sqrt{2}\left(AB+AC-\sqrt{2}\right)\)
\(\Leftrightarrow BC\le\sqrt{2}\left(AB+AC\right)-2\)
\(\Leftrightarrow\left(BC+2\right)^2\le2\left(AB+AC\right)^2\)
\(\Leftrightarrow BC^2+4BC+4\le2AB^2+2AC^2+4AB.AC\)
\(\Leftrightarrow AB^2+AC^2+4BC+4\le2AB^2+2AC^2+4.2\)( \(AB^2+AC^2=BC^2\)Và\(AB.AC=2\))
\(\Leftrightarrow4BC\le AB^2+AC^2+4\)
\(\Leftrightarrow4BC\le BC^2+4\)
\(\Leftrightarrow-BC^2+4BC-4\le0\)
\(\Leftrightarrow-\left(BC-2\right)^2\le0\)(Luôn đúng)
Vậy bđt đã được chứng minh
vì tam giác ABC vuông tại A =>\(BC^2=AB^2+AC^2\ge2AB.AC=4\) (vì \(S_{ABC}=\frac{AB.AC}{2}\Rightarrow AB.AC=2\) )
\(\Rightarrow BC\ge2\) (ĐPCM)
dấu = xảy ra <=> tam giác ABC vuông cân tại A
^_^
CHÚ Ý: Tỷ số về diện tích bằng bình phương tỷ số đồng dạng
Áp dụng:
\(k=\frac{AB}{MN}=\frac{AC}{MP}=\frac{BC}{NP}=\frac{AB+BC+CA}{MN+NP+PM}=\frac{P_{ABC}}{P_{MNP}}\)
Vậy => \(\frac{S_{ABC}}{S_{MNP}}=k^2=\left(\frac{P_{ABC}}{P_{MNP}}\right)^2\)
ĐPCM
A B C D M N P Q M B Q D N P
AM = MN = NP ; BP = PQ = QC nên AM = 1/3 AD ; MN = 1/2 MD ; QC = 1/3 BC ; PQ = 1/2 BQ
\(\Delta ABM,\Delta ABD\)có chung đường cao hạ từ B và đáy AM = 1/3 AD nên SABM = 1/3 SABD
\(\Delta QCD,\Delta BCD\)có chung đường cao hạ từ D và đáy QC = 1/3 BC nên SQCD = 1/3 SBCD
=> SMBQD = SABCD - (SABM + SQCD) = SABCD - 1/3 x (SABD + SBCD) = SABCD - 1/3 SABCD = 2/3 SABCD
\(\Delta MNQ,\Delta MDQ\)có chung đường cao hạ từ Q và đáy MN = 1/2 MD nên SMNQ = 1/2 SMDQ
\(\Delta MPQ,\Delta MBQ\)có chung đường cao hạ từ M và đáy PQ = 1/2 BQ nên SMPQ = 1/2 SMBQ
=> SMNQP = SMNQ + SMPQ = 1/2 x (SMDQ + SMBQ) = 1/2 x SMBQD = 1/2 x 2/3 x SABCD = 1/3 x 600 = 200 (cm2)
A B C M D E N P
+) Đặt N,P thứ tự là trung điểm cạnh AB,AC. Có ngay MN,MP là các đường trung bình trong \(\Delta\)ABC
Đồng thời DN vuông góc AB, EP vuông góc AC
Do đó ^DNM = ^MPE (= 900 + ^BAC). Ta cũng có: DN = AB/2 = MP, NM = PE
Suy ra \(\Delta\)DNM = \(\Delta\)MPE (c.g.c). Từ đây DM = ME (1)
Ta thấy ^DME = ^NMP + ^NMD + ^PME = ^BAC + ^NMD + ^NDM = ^BAC + 1800 - ^BNM - 900 = 900 (2)
Từ (1) và (2) suy ra \(\Delta\)MDE vuông cân tại M (đpcm).
+) Ta dễ có \(AD=\frac{\sqrt{2}}{2}AB,AE=\frac{\sqrt{2}}{2}AC\)(Tỉ số lượng giác)
Theo quy tắc 3 điểm thì \(DE\le AD+AE=\frac{\sqrt{2}}{2}\left(AB+AC\right)\)(đpcm).
Dấu "=" xảy ra khi và chỉ khi A thuộc DE <=> ^BAC + ^BAD + ^CAE = 1800 => ^BAC = 900.
1)
Ta có: \(M=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\sqrt{3\left(a+b\right)\left(a+b+4c\right)}}\ge\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\frac{3\left(a+b\right)+\left(a+b+4c\right)}{2}}=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{2\left(a+b+c\right)}=3\sqrt{3}\)
Dấu "=" xảy ra khi a=b=c
2)
\(\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}=\Sigma_{cyc}\frac{2a}{\sqrt[3]{2a\left(ab+1\right)^2}}\ge\Sigma_{cyc}\frac{2a}{\frac{2a+\left(ab+1\right)+\left(ab+1\right)}{3}}=3\Sigma_{cyc}\frac{a}{ab+a+1}\)
Ta có bổ đề: \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=1\left(abc=1\right)\)
\(\Rightarrow\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}\ge3\)
Áp dụng bđt Cauchy cho 2 số không âm :
\(x^2+\frac{1}{x}\ge2\sqrt[2]{\frac{x^2}{x}}=2.\sqrt{x}\)
\(y^2+\frac{1}{y}\ge2\sqrt[2]{\frac{y^2}{y}}=2.\sqrt{y}\)
Cộng vế với vế ta được :
\(x^2+y^2+\frac{1}{x}+\frac{1}{y}\ge2.\sqrt{x}+2.\sqrt{y}=2\left(\sqrt{x}+\sqrt{y}\right)\)
Vậy ta có điều phải chứng mình
Ta đi chứng minh:\(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)* đúng *
Khi đó:
\(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{1}{ab\left(a+b+c\right)}=\frac{c}{abc\left(a+b+c\right)}\)
Tương tự:
\(\frac{1}{b^3+c^3+abc}\le\frac{a}{abc\left(a+b+c\right)};\frac{1}{c^3+a^3+abc}\le\frac{b}{abc\left(a+b+c\right)}\)
\(\Rightarrow LHS\le\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\)
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c