Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
1: 7/20-|x+2/5|=10/21
=>|x+2/5|=-53/420(vô lý)
2: \(\left|\dfrac{3}{7}-x\right|-\left(-\dfrac{2}{3}\right)=1+\dfrac{1}{2}\)
\(\Leftrightarrow\left|x-\dfrac{3}{7}\right|=\dfrac{3}{2}-\dfrac{2}{3}=\dfrac{5}{6}\)
=>x-3/7=5/6 hoặc x-3/7=-5/6
=>x=53/42 hoặc x=-17/42
a/ \(M=\left(-2x^4+x^2+5\right)-\left(5x^2-x^3+4x\right)\)
\(=-2x^4+x^2+5-5x^2+x^3-4x\)
\(=-2x^4+x^3-4x^2-4x+5\)
Vậy...
b/ \(M=-2x^4+x^2+5+5x^2-x^3+4x\)
\(=-2x^4-x^4+6x^2+4x+5\)
Vậy...
c/ \(M=\left(5x^2-x^3+4x\right)-\left(-2x^4+x^2+5\right)\)
\(=5x^2-x^3+4x+2x^4-x^2-5\)
\(=2x^4-x^3+4x^2-5\)
Vậy...
d/ \(M=-\left(5x^2-x^3+4x\right)\)
\(=x^4-5x^2-4x\)
Vậy..
a: \(P\left(x\right)=x^5+2x^4-9x^3-x\)
\(Q\left(x\right)=5x^4+9x^3+4x^2-14\)
c:: \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=x^5+7x^4+4x^2-x-14\)
d: \(M\left(2\right)=32+7\cdot16+4\cdot4-2-14=144\)
\(M\left(-2\right)=-32+7\cdot16+4\cdot4+2-14=84\)
Bài1:
\(\left|x\right|=5\)
\(\Rightarrow x\in\left\{-5;5\right\}\)
Vậy...
\(\left|x\right|+x=4\)
\(\Rightarrow\left|x\right|=4-x\)
+)Xét \(x\ge0\Rightarrow\left|x\right|=x\)
Do đó:
\(x=4-x\)
\(2x=4\Rightarrow x=2\left(chọn\right)\)
+) Xét \(x< 0\Rightarrow\left|x\right|=-x\)
Do đó:
\(-x=4-x\)
\(0x=4\)
\(x\in\varnothing\)
Vậy...
Bài2:
\(\left|x+1\right|+5\)
Với mọi x thì \(\left|x+1\right|\ge0\Rightarrow\left|x+1\right|+5\ge5\)
Để \(\left|x+1\right|+5=5\) thì
\(\left|x+1\right|=0\)
\(x+1=0\)
\(x=-1\)
Vậy...
Bài 1:
a) \(\left|x\right|=5\Rightarrow x=\pm5\)
b) \(\left|x\right|+x=4\Rightarrow\left|x\right|=4-x\)
\(\Rightarrow\left\{{}\begin{matrix}x=4-x\Rightarrow x+x=4\Rightarrow2x=4\Rightarrow x=2\\x=x-4\Rightarrow x-x=-4\Rightarrow0=-4\left(loại\right)\end{matrix}\right.\)
c) \(\left|x+2\right|=5\)
\(\Rightarrow\left\{{}\begin{matrix}x+2=5\Rightarrow x=3\\x+2=-5\Rightarrow x=-7\end{matrix}\right.\)
Bài 2:
Ta có: \(\left|x+1\right|\ge0\forall x\)
\(\Rightarrow\left|x+1\right|+5\ge5\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x+1=0\Rightarrow x=-1\)
Vậy MIN \(A=5\Leftrightarrow x=-1\)
\(20x^3-10x^2+5x-20x^3+10x^2-4x=0\)
\(\left(20x^3-20x^3\right)+\left(-10x^2+10x^2\right)+\left(5x-4x\right)=0\)
\(x=0\)
5x(4x2−2x+1)−2x(10x2−5x+2)=−36
5�.4�2+5�.(−2�)+5�.1+(−2�).10�2+(−2�).(−5�)+(−2�).2=−365x.4x2+5x.(−2x)+5x.1+(−2x).10x2+(−2x).(−5x)+(−2x).2=−36
20�3+(−10�2)+5�+(−20�3)+10�2+(−4�)=−3620x3+(−10x2)+5x+(−20x3)+10x2+(−4x)=−36
(20�3−20�3)+(−10�2+10�2)+(5�−4�)=−36(20x3−20x3)+(−10x2+10x2)+(5x−4x)=−36
�=−36x=−36
Vậy �=−36x=−36.
1, \(5.\left|x+2\right|=10.\left(-2\right)\)
\(\Leftrightarrow5.\left|x+2\right|=-20\)
\(\Leftrightarrow\left|x+2\right|=-\frac{20}{5}=-4\)
Ta thấy : \(\left|x+2\right|\ge0\forall x\) mà \(-4< 0\)
\(\Rightarrow x\in\varnothing\)
Vậy : không có \(x\) thỏa mãn đề.
2, \(-4.\left|x-2\right|=8\)
\(\Leftrightarrow\left|x-2\right|=8:\left(-4\right)=-2\)
Ta thấy : \(\left|x-2\right|\ge0\forall x\) mà \(-2< 0\)
\(\Rightarrow x\in\varnothing\)
Vậy : không có \(x\) thỏa mãn đề.
3, \(2.\left(x-5\right)-3.\left(x+7\right)=12\)
\(\Leftrightarrow2x-10-3x-21=12\)
\(\Leftrightarrow2x-3x=12+10+21\)
\(\Leftrightarrow-x=43\)
\(\Leftrightarrow x=-43\)
Vậy : \(x=-43\)
4, \(7.\left(5-x\right)-2.\left(x+3\right)=15\)
\(\Leftrightarrow35-7x-2x-6=15\)
\(\Leftrightarrow-7x-2x=15-35+6\)
\(\Leftrightarrow-9x=-14\)
\(\Leftrightarrow x=\frac{14}{9}\)
Vậy : \(x=\frac{14}{9}\)
Chúc bạn học tốt !!!
1) \(5.\left|x+2\right|=10.\left(-2\right)\)
=> \(5.\left|x+2\right|=-20\)
=> \(\left|x+2\right|=\left(-20\right):5\)
=> \(\left|x+2\right|=-4\)
Ta luôn có \(\left|x\right|\ge0\) \(\forall x.\)
=> \(\left|x+2\right|>-4\)
=> \(\left|x+2\right|\ne-4\)
Vậy không tồn tại giá trị nào của \(x\) thỏa mãn yêu cầu đề bài.
2) \(-4.\left|x-2\right|=8\)
=> \(\left|x-2\right|=8:\left(-4\right)\)
=> \(\left|x-2\right|=-2\)
Ta luôn có \(\left|x\right|\ge0\) \(\forall x.\)
=> \(\left|x-2\right|>-2\)
=> \(\left|x-2\right|\ne-2\)
Vậy không tồn tại giá trị nào của \(x\) thỏa mã yêu cầu đề bài.
Mình chỉ làm 2 câu này thôi nhé.
Chúc bạn học tốt!
mình khuyên bạn nên đưa lên từng câu một thôi chứ bạn đưa lên dài thế này ai nhìn cũng khong muốn làm đâu nha
BẠN HÃY DÙNG Fx ĐỂ GHI CHO DỄ HIỂU NHÉ BẠN
M = - (\(x\) - 2)2 - 5
Vì (\(x-2\))2 ≥ 0 ∀ \(x\) ⇒ -(\(x-2\))2 ≤ 0 ∀ \(x\)
⇒ - (\(x-2\))2 - 5 ≤ - 5 dấu bằng xảy ra khi \(x=2\)
Vậy Mmax = -5 khi \(x=2\)