Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x^4-2x^2-1=-3m\)
Xét hàm \(f\left(x\right)=x^4-2x^2-1\)
\(f'\left(x\right)=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=1\end{matrix}\right.\)
BBT:
Từ BBT ta thấy \(y=-3m\) cắt \(y=f\left(x\right)\) tại 3 điểm pb khi \(-2< -3m< -1\)
\(\Leftrightarrow\dfrac{1}{3}< m< \dfrac{2}{3}\)
\(\Leftrightarrow2^{-3}.2^{2x}-3.2^{-2}.2^x+1=0\)
\(\Leftrightarrow\dfrac{1}{8}2^{2x}-\dfrac{3}{4}2^x+1=0\)
Đặt \(2^x=t>0\)
\(\Rightarrow\dfrac{1}{8}t^2-\dfrac{3}{4}t+1=0\Rightarrow\left[{}\begin{matrix}t=4\\t=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2^x=4\\2^x=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
\(\Rightarrow4^x-3.2^{x+1}+2=\sqrt{2}^{2\left(x+2\right)}\)
\(\Leftrightarrow4^x-6.2^x+2=2^{x+2}=4.2^x\)
Đặt \(2^x=a>0\Rightarrow a^2-6a+2=4a\)
\(\Leftrightarrow a^2-10a+2=0\Rightarrow\left[{}\begin{matrix}a=5+\sqrt{23}\\a=5-\sqrt{23}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2^x=5+\sqrt{23}\\2^x=5-\sqrt{23}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=log_2\left(5+\sqrt{23}\right)\\x=log_2\left(5-\sqrt{23}\right)\end{matrix}\right.\)
Tìm tất cả các giá trị của m để pt \(8^{2x^2-2x-4}+m^2-m=0\) có nghiệm.
Mong m.n chỉ cho e cách giải.
xét \(A=2x^2-2x-4=2\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\right]\ge-\dfrac{9}{2}\)
\(\Rightarrow8^{2x^2-2x-4}\ge\dfrac{1}{\sqrt{8^9}}\)
Để phương trình: \(8^{2x^2-2x-4}+m^2-m=0\) có nghiệm
Cần \(m-m^2\ge\dfrac{1}{\sqrt{8^9}}\Leftrightarrow m^2-m+\dfrac{1}{\sqrt{.8^9}}\le0\)
\(\Rightarrow\dfrac{1-\sqrt{1-\dfrac{4}{\sqrt{8^9}}}}{2}\le m\le\dfrac{1+\sqrt{1-\dfrac{4}{\sqrt{8^9}}}}{2}\)
=>không có đáp án nào tuyệt đối chính xác.
chọn phương B gần đúng nhất nhưng vẫn chưa đúng:
do \(\left\{{}\begin{matrix}\dfrac{1+\sqrt{1-\dfrac{4}{\sqrt{8^9}}}}{2}< 1\\\dfrac{1-\sqrt{1-\dfrac{4}{\sqrt{8^9}}}}{2}>0\end{matrix}\right.\).
a: \(\left\{{}\begin{matrix}2x-2y+z=3\\2x+y-2z=-3\\3x-4y-z=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x-4y+2z=6\\8x+4y-8z=-3\\3x-4y-z=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}12x-6z=3\\11x-9z=1\\3x-4y-z=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\z=\dfrac{1}{2}\\4y=3x-z-4=\dfrac{3}{2}-\dfrac{1}{2}-4=1-4=-3\end{matrix}\right.\)
=>x=1/2;z=1/2;y=-3/4
14.
\(log_aa^2b^4=log_aa^2+log_ab^4=2+4log_ab=2+4p\)
15.
\(\frac{1}{2}log_ab+\frac{1}{2}log_ba=1\)
\(\Leftrightarrow log_ab+\frac{1}{log_ab}=2\)
\(\Leftrightarrow log_a^2b-2log_ab+1=0\)
\(\Leftrightarrow\left(log_ab-1\right)^2=0\)
\(\Rightarrow log_ab=1\Rightarrow a=b\)
16.
\(2^a=3\Rightarrow log_32^a=1\Rightarrow log_32=\frac{1}{a}\)
\(log_3\sqrt[3]{16}=log_32^{\frac{4}{3}}=\frac{4}{3}log_32=\frac{4}{3a}\)
11.
\(\Leftrightarrow1>\left(2+\sqrt{3}\right)^x\left(2+\sqrt{3}\right)^{x+2}\)
\(\Leftrightarrow\left(2+\sqrt{3}\right)^{2x+2}< 1\)
\(\Leftrightarrow2x+2< 0\Rightarrow x< -1\)
\(\Rightarrow\) có \(-2+2020+1=2019\) nghiệm
12.
\(\Leftrightarrow\left\{{}\begin{matrix}x-2>0\\0< log_3\left(x-2\right)< 1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>2\\1< x-2< 3\end{matrix}\right.\)
\(\Rightarrow3< x< 5\Rightarrow b-a=2\)
13.
\(4^x=t>0\Rightarrow t^2-5t+4\ge0\)
\(\Rightarrow\left[{}\begin{matrix}t\le1\\t\ge4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}4^x\le1\\4^x\ge4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x\le0\\x\ge1\end{matrix}\right.\)
\(\Leftrightarrow x^4-a^4+a^2x^2-a^4=0\)
\(\Leftrightarrow\left(x^2-a^2\right)\left(x^2+a^2\right)+a^2\left(x^2-a^2\right)=0\)
\(\Leftrightarrow\left(x^2-a^2\right)\left(x^2+2a^2\right)=0\)
\(\Leftrightarrow x=\pm a\)
Chia 2 vế cho \(a^4\) thì pt trở thành:
\(\frac{x^4}{a^4}+\frac{x^2}{a^2}-2=0\)
Đặt \(\frac{x^2}{a^2}=t\ge0\Rightarrow t^2+t-2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\frac{x^2}{a^2}=1\)