Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow4^x-3.2^{x+1}+2=\sqrt{2}^{2\left(x+2\right)}\)
\(\Leftrightarrow4^x-6.2^x+2=2^{x+2}=4.2^x\)
Đặt \(2^x=a>0\Rightarrow a^2-6a+2=4a\)
\(\Leftrightarrow a^2-10a+2=0\Rightarrow\left[{}\begin{matrix}a=5+\sqrt{23}\\a=5-\sqrt{23}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2^x=5+\sqrt{23}\\2^x=5-\sqrt{23}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=log_2\left(5+\sqrt{23}\right)\\x=log_2\left(5-\sqrt{23}\right)\end{matrix}\right.\)
ĐK: x>1
\(\log_{2^{\dfrac{1}{2}}}\left(x-1\right)+\log_{2^{-1}}\left(x+1\right)=1\)
\(\log_2\left[\left(x-1\right)^2.\left(x-1\right)^{-1}\right]=\log_22\)
=> x-1 = 2(x-1)
=> x=1 (ktmđk)
bài a, nhứ đã giải ở câu trc:
b, ĐK: 0<x, x khác 1.
ta có: log2x64= 6.log2x2= 6( \(\frac{1}{1+log_2x}\))
logx216=2logx2=\(\frac{2}{log_2x}\)
Thay vào pt:
6( \(\frac{1}{1+log_2x}\)) +\(\frac{2}{log_2x}\) =3
đặt T=log2x, ĐK. t>0
<=>6\(\frac{1}{1+t}\) +\(\frac{2}{t}\)=3
.......
<=> t=2( nghiệm -\(\frac{1}{3}\)<0 loại)
.....
<=>x=4(thõa)