Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Phương trình bậc nhất một ẩn là phương trình có dạng ax + b = 0 (với a ≠ 0)
Ví dụ: 2x + 4 = 0
a = 2; b = 4
b) Công thức tính thể tích hình hộp chữ nhật:
V = Sh
Với V là thể tích, S là diện tích 1 đáy, h là chiều cao
c)
Thể tích:
V = AB.AD.AA'
= 12 . 16 . 25 = 4800 (cm³)
a: ax+b=0(a<>0) là phương trình bậc nhất một ẩn
b: V=a*b*c
a,b là chiều dài, chiều rộng
c là chiều cao
c: V=12*16*25=4800cm3
a.
HPT \(\Leftrightarrow \left\{\begin{matrix} x(y+2)=(x-2)(y-1)+100\\ (x-4)(y-3)=(x-2)(y-1)-64\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 2x=-x-2y+102\\ -3x-4y+12=-x-2y-62\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 3x+2y=102\\ 2x+2y=74\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=28\\ y=9\end{matrix}\right.\)
b. Đặt $\frac{1}{x+y-1}=a; \frac{1}{2x-y+3}=b$ thì hpt trở thành:
\(\left\{\begin{matrix} 4a-5b=\frac{5}{3}\\ 3a+b=\frac{7}{5}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=\frac{26}{57}\\ b=\frac{3}{95}\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x+y-1=\frac{57}{26}\\ 2x-y+3=\frac{95}{3}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+y=\frac{83}{26}\\ 2x-y=\frac{86}{3}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{2485}{234}\\ y=\frac{-869}{117}\end{matrix}\right.\)
Bài 1:
a) Ta có: \(2\left(3-4x\right)=10-\left(2x-5\right)\)
\(\Leftrightarrow6-8x-10+2x-5=0\)
\(\Leftrightarrow-6x+11=0\)
\(\Leftrightarrow-6x=-11\)
hay \(x=\dfrac{11}{6}\)
b) Ta có: \(3\left(2-4x\right)=11-\left(3x-1\right)\)
\(\Leftrightarrow6-12x-11+3x-1=0\)
\(\Leftrightarrow-9x-6=0\)
\(\Leftrightarrow-9x=6\)
hay \(x=-\dfrac{2}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+7=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-7\end{matrix}\right.\)
a) Phương trình \(7x + \dfrac{4}{7} = 0\) là phương trình bậc nhất một ẩn vì có dạng \(ax + b = 0\) với \(a\) và \(b\) là các hệ số đã cho và \(a \ne 0\), \(x\) là ẩn số.
Khi đó, \(a = 7;b = \dfrac{4}{7}\).
b) \(\dfrac{3}{2}y - 5 = 4\)
\(\dfrac{3}{2}y - 5 - 4 = 0\)
\(\dfrac{3}{2}y - 9 = 0\)
Phương trình \(\dfrac{3}{2}y - 9 = 0\) là phương trình bậc nhất một ẩn vì có dạng \(ay + b = 0\) với \(a\) và \(b\) là các hệ số đã cho và \(a \ne 0\), \(y\) là ẩn số.
Khi đó, \(a = \dfrac{3}{2};b = - 9\)
c) Phương trình \(0t + 6 = 0\) không là phương trình bậc nhất một ẩn.
Mặc dù phương trình đã cho có dạng \(at + b = 0\) với \(a\) và \(b\) là các hệ số đã cho nhưng \(a = 0\).
d) Phương trình \({x^2} + 3 = 0\) không là phương trình bậc nhất một ẩn vì không có dạng \(ax + b = 0\) với \(a\) và \(b\) là các hệ số đã cho và \(a \ne 0\), \(x\) là ẩn số (do có \({x^2}\)).
Tham khảo :
a) \(\hept{\begin{cases}x-y=14\\3x-4y=1\end{cases}}\)
b) \(\hept{\begin{cases}14x+27y=25\\4x+y=1\end{cases}}\)
a)
`x^2+3x+2=0`
`<=>x^2+2x+x+2=0`
`<=>x(x+2)+(x+2)=0`
`<=>(x+2)(x+1)=0`
`<=>x+2=0` hoặc `x+1=0`
`<=>x=-2` hoặc `x=-1`
b)
\(\left\{{}\begin{matrix}x-3y=5\\3x+2y=4\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}3x-9y=15\\3x+2y=4\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}-11y=11\\x-3y=5\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}y=-1\\x-3\cdot\left(-1\right)=5\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}y=-1\\x=2\end{matrix}\right.\)