K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2022

881818833

 

24 tháng 3 2022

Đây ko nhắn linh tinh nha bạn

@congtybaocao

2 tháng 5 2016

ai giải câu c vs câu d giùm đi đg cần gấp ơn mọi người nhìuoho

26 tháng 3 2016

a) Ta có \(\log_32<\log_33=1=\log_22<\log_23\)

b) \(\log_23<\log_24=2=\log_39<\log_311\)

c) Đưa về cùng 1 lôgarit cơ số 10, ta có 

\(\frac{1}{2}+lg3=\frac{1}{2}lg10+lg3=lg3\sqrt{10}\)

\(lg19-lg2=lg\frac{19}{2}\)

So sánh 2 số \(3\sqrt{10}\) và \(\frac{19}{2}\) ta có :

\(\left(3\sqrt{10}\right)^2=9.10=90=\frac{360}{4}<\frac{361}{4}=\left(\frac{19}{2}\right)^2\)

Vì vậy : \(3\sqrt{10}<\frac{19}{2}\)

Từ đó suy ra \(\frac{1}{2}+lg3\)<\(lg19-lg2\)

d) Ta có : \(\frac{lg5+lg\sqrt{7}}{2}=lg\left(5\sqrt{7}\right)^{\frac{1}{2}}=lg\sqrt{5\sqrt{7}}\)

Ta so sánh 2 số : \(\sqrt{5\sqrt{7}}\) và \(\frac{5+\sqrt{7}}{2}\) 

Ta có :

\(\sqrt{5\sqrt{7}}^2=5\sqrt{7}\)

\(\left(\frac{5+\sqrt{7}}{2}\right)^2=\frac{32+10\sqrt{7}}{4}=8+\frac{5}{2}\sqrt{7}\)

\(8+\frac{5}{2}\sqrt{7}-5\sqrt{7}=8-\frac{5}{2}\sqrt{7}=\frac{16-5\sqrt{7}}{2}=\frac{\sqrt{256}-\sqrt{175}}{2}>0\)

Suy ra : \(8+\frac{5}{2}\sqrt{7}>5\sqrt{7}\)

Do đó : \(\frac{5+\sqrt{7}}{2}>\sqrt{5\sqrt{7}}\)

và \(lg\frac{5+\sqrt{7}}{2}>\frac{lg5+lg\sqrt{7}}{2}\)

 

26 tháng 3 2016

Chọn 2 làm cơ số, ta có :

\(A=\log_616=\frac{\log_216}{\log_26}=\frac{4}{1=\log_23}\)

Mặt khác :

\(x=\log_{12}27=\frac{\log_227}{\log_212}=\frac{3\log_23}{2+\log_23}\)

Do đó : \(\log_23=\frac{2x}{3-x}\) suy ra \(A=\frac{4\left(3-x\right)}{3+x}\)

b) Ta có :

\(B=\frac{lg30}{lg125}=\frac{lg10+lg3}{3lg\frac{10}{2}}=\frac{1+lg3}{3\left(1-lg2\right)}=\frac{1+a}{3\left(1-b\right)}\)

c) Ta có :

\(C=\log_65+\log_67=\frac{1}{\frac{1}{\log_25}+\frac{1}{\log_35}}+\frac{1}{\frac{1}{\log_27}+\frac{1}{\log_37}}\)

Ta tính \(\log_25,\log_35,\log_27,\log_37\) theo a, b, c .

Từ : \(a=\log_{27}5=\log_{3^3}5=\frac{1}{3}\log_35\)

Suy ra \(\log_35=3a\) do đó :

                                     \(\log_25=\log_23.\log35=3ac\)

Mặt khác : \(b=\log_87=\log_{2^3}7=\frac{1}{3}\log_27\) nên \(\log_27=3b\)

Do đó : \(\log_37=\frac{\log_27}{\log_23}=\frac{3b}{c}\)

Vậy : \(C=\frac{1}{\frac{1}{3ac}+\frac{1}{3a}}+\frac{1}{\frac{1}{3b}+\frac{c}{3b}}=\frac{3\left(ac+b\right)}{1+c}\)

d) Điều kiện : \(a>0;a\ne0;b>0\)

Từ giả thiết \(\log_ab=\sqrt{3}\) suy ra \(b=a^{\sqrt{3}}\). Do đó :

\(\frac{\sqrt{b}}{a}=a^{\frac{\sqrt{3}}{2}-1};\frac{\sqrt[3]{b}}{\sqrt{a}}=a^{\frac{\sqrt{3}}{3}-\frac{1}{2}}=a^{\frac{\sqrt{3}}{3}\left(\frac{\sqrt{3}}{2}-1\right)}\)

Từ đó ta tính được :

\(A=\log_{a^{\alpha}}a^{\frac{-\sqrt{3}}{3}\alpha}=\log_{a^{\alpha}}\left(a^{\alpha}\right)^{\frac{-\sqrt{3}}{3}}=\frac{-\sqrt{3}}{3}\) với \(\alpha=\frac{\sqrt{3}}{2}-1\)

 

 

14 tháng 5 2016

A C D B (P) (Q)

Do \(\left(P\right)\perp\left(Q\right)\) và \(\left(P\right)\cap\left(Q\right)=\Delta\)

và \(DB\perp\left(\Delta\right)\left(DB\in\left(Q\right)\right)\)

Nên \(DB\perp\left(P\right)\Rightarrow DB\perp BC\)

Tương tự ta có :

                \(CA\perp AD\)

Vì \(\widehat{CAD}=\widehat{DBC}=90^0\) nên CD chính là  đường kính hình cầu ngoại tiếp tứ diện ABCD.

Gọi R là bán kính của hinh cầu này thì :

                \(R=\frac{1}{2}CD\)  (1)

Theo định lý Pitagoc trong 2 tam giác vuông CAD, ABD ta có :

        \(CD^2=CA^2+AD^2=CA^2+BA^2+BD^2=3a^2\)

                                         \(\Rightarrow CD=a\sqrt{3}\) (2)

Từ (1) và (2) suy ra \(R=\frac{a\sqrt{3}}{2}\)

29 tháng 3 2016

Biến đổi phương trình về dạng :

\(\frac{\left(\frac{5}{4}\right)^x+1}{\left(\frac{1}{4}\right)^x+\left(\frac{2}{4}\right)^x+\left(\frac{3}{4}\right)^x}=\frac{3}{2}\)

Nhận thấy \(x=1\) là nghiệm 

Nếu \(x>1\) thì \(\left(\frac{5}{4}\right)^x+1>\frac{5}{4}+1=\frac{9}{4}\) và \(\left(\frac{1}{4}\right)^x+\left(\frac{2}{4}\right)^x+\left(\frac{3}{4}\right)^x<\frac{1}{4}+\frac{2}{4}+\frac{3}{4}=\frac{6}{4}\)

Suy ra vế trái >\(\frac{3}{2}\)= vế phải, phương trình vô nghiệm. Tương tự khi x<1.

Đáp số : x=1

 

6 tháng 4 2016

\(d\left(A,\left(\alpha\right)\right)=\frac{4}{3}\)

\(\left(\beta\right)\)//\(\left(\alpha\right)\) nên phương trình \(\left(\beta\right)\) có dạng : \(x+2y-2z+d=0,d\ne-1\)

\(d\left(A,\left(\alpha\right)\right)=d\left(A,\left(\beta\right)\right)\)\(\Leftrightarrow\frac{\left|5+d\right|}{3}=\frac{4}{3}\Leftrightarrow\begin{cases}d=-1\\d-9\end{cases}\)\(\Leftrightarrow d=-9\left(d=-1loai\right)\)\(\Rightarrow\left(\beta\right):x+2y-2z-9=0\)

 

28 tháng 2 2019

\(\left(\frac{3}{4}+\frac{1}{2}\right)\cdot\frac{5}{7}\)

=\(\frac{5}{4}\cdot\frac{5}{7}\)

=\(\frac{25}{28}\)

28 tháng 2 2019

Cách 2 cữa bạn ơi

17 tháng 5 2016

 

\(e^x\ge x+1\) với mọi \(x\in R\) \(\Leftrightarrow e^x-x-1\ge0\) với mọi \(x\in R\)

Xét hàm số \(f\left(x\right)=e^x-x-1\) với mọi \(x\in R\)

Ta có : \(f'\left(x\right)=e^x-1=0\Leftrightarrow x=0\)

và : \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left(e^x-x-1\right)=+\infty\)

        \(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow+\infty}\left(e^x-x-1\right)=+\infty\)

Xét bảng biến thiên :

x f'(x) f(x) 8 8 8 8 - + + + 0 0 0 - +

Từ bảng biến thiên ta có : \(f\left(x\right)\ge0\) với mọi \(x\in R\)

                              hay : \(e^x-x-1\ge0\) với mọi  \(x\in R\)

=> Điều phải chứng minh