Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Ta có: \(\frac{x-2}{5}=\frac{2x-3}{4}\)
\(\Rightarrow\left(x-2\right).4=5.\left(2x-3\right)\)
\(\Rightarrow4x-8=10x-15\)
\(\Rightarrow4x-10x=8-15\)
\(\Rightarrow-6x=-7\)
\(\Rightarrow x=\frac{7}{6}\)
Vậy \(x=\frac{7}{6}\)
Giải :
Ta có : \(\frac{x-2}{5}=\frac{2x-3}{4}\)
\(\Rightarrow\left(x-2\right),4=5,\left(2x-3\right)\)
\(\Rightarrow4x-8=10x-15\)
\(\Rightarrow4x-10x=8-15\)
\(\Rightarrow-6x=-7\)
\(\Rightarrow x=\frac{7}{6}\)
Vậy \(x\) là \(\frac{7}{6}\)
\(\left(\frac{1}{4}x-1\right)-\left(\frac{2}{3}x-1\right)+\left(\frac{4}{5}x-1\right)=\frac{2}{3}\)
\(\frac{1}{4}x-1-\frac{2}{3}x+1+\frac{4}{5}x-1\)\(=\frac{2}{3}\)
\(\left(\frac{1}{4}x-\frac{2}{3}x+\frac{4}{5}x\right)+1-1-1\)\(=\frac{2}{3}\)
\(\frac{23}{60}x-1\)\(=\frac{2}{3}\)
\(\frac{23}{60}x=\frac{2}{3}+1\)
\(\frac{23}{60}x=\frac{5}{3}\)
\(x=\frac{5}{3}:\frac{23}{60}=\frac{100}{23}\)
Vậy x=\(\frac{100}{23}\)
Câu 2)
Đặt \(\left\{\begin{matrix} u=\ln ^2x\\ dv=x^2dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=2\frac{\ln x}{x}dx\\ v=\frac{x^3}{3}\end{matrix}\right.\Rightarrow I=\frac{x^3}{3}\ln ^2x-\frac{2}{3}\int x^2\ln xdx\)
Đặt \(\left\{\begin{matrix} k=\ln x\\ dt=x^2dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} dk=\frac{dx}{x}\\ t=\frac{x^3}{3}\end{matrix}\right.\Rightarrow \int x^2\ln xdx=\frac{x^3\ln x}{3}-\int \frac{x^2}{3}dx=\frac{x^3\ln x}{3}-\frac{x^3}{9}+c\)
Do đó \(I=\frac{x^3\ln^2x}{3}-\frac{2}{9}x^3\ln x+\frac{2}{27}x^3+c\)
Câu 3:
\(I=\int\frac{2}{\cos 2x-7}dx=-\int\frac{2}{2\sin^2x+6}dx=-\int\frac{dx}{\sin^2x+3}\)
Đặt \(t=\tan\frac{x}{2}\Rightarrow \left\{\begin{matrix} \sin x=\frac{2t}{t^2+1}\\ dx=\frac{2dt}{t^2+1}\end{matrix}\right.\)
\(\Rightarrow I=-\int \frac{2dt}{(t^2+1)\left ( \frac{4t^2}{(t^2+1)^2}+3 \right )}=-\int\frac{2(t^2+1)dt}{3t^4+10t^2+3}=-\int \frac{2d\left ( t-\frac{1}{t} \right )}{3\left ( t-\frac{1}{t} \right )^2+16}=\int\frac{2dk}{3k^2+16}\)
Đặt \(k=\frac{4}{\sqrt{3}}\tan v\). Đến đây dễ dàng suy ra \(I=\frac{-1}{2\sqrt{3}}v+c\)
1) Đặt \(2+lnx=t\Leftrightarrow x=e^{t-2}\Rightarrow dx=e^{t-2}dt\)
\(I_1=\int\left(\frac{t-2}{t}\right)^2\cdot e^{t-2}\cdot dt=\int\left(1-\frac{4}{t}+\frac{4}{t^2}\right)e^{t-2}dt\\ =\int e^{t-2}dt-4\int\frac{e^{t-2}}{t}dt+4\int\frac{e^{t-2}}{t^2}dt\)
Có:
\(4\int\frac{e^{t-2}}{t^2}dt=-4\int e^{t-2}\cdot d\left(\frac{1}{t}\right)=-\frac{4\cdot e^{t-2}}{t}+4\int\frac{e^{t-2}}{t}dt\\ \Leftrightarrow4\int\frac{e^{t-2}}{t^2}dt-4\int\frac{e^{t-2}}{t^{ }}dt=-\frac{4\cdot e^{t-2}}{t}\)
Vậy \(I_1=\int e^{t-2}dt-\frac{4\cdot e^{t-2}}{t}=e^{t-2}-\frac{4e^{t-2}}{t}+C\)
3) Đặt \(t=\sqrt{1+\sqrt[3]{x^2}}\Rightarrow t^2-1=\sqrt[3]{x^2}\Leftrightarrow x^2=\left(t^2-1\right)^3\)
\(d\left(x^2\right)=d\left[\left(t^2-1\right)^3\right]\Leftrightarrow2x\cdot dx=6t\left(t^2-1\right)^2\cdot dt\)
\(I_3=\int\frac{3t\left(t^2-1\right)^2}{t}dt=3\int\left(t^4-2t^2+1\right)dt=...\)
Ta có :
\(\begin{cases}5>1;3>1\Rightarrow\log_53>0\\15>1;4>1\Rightarrow\log_{15}4>0\\0< \frac{1}{3}< 1;\frac{7}{2}>1\Rightarrow\log_{\frac{1}{3}}\frac{14}{5}< 0\\0< 0,3< 1;\frac{7}{2}>1\Rightarrow\log_{0,3}\frac{7}{2}< 0\end{cases}\)
\(\Rightarrow A=\frac{\log_53.\log_{15}4}{\log_{\frac{1}{3}}\frac{14}{5}\log_{0,3}\frac{7}{2}}>0\)
Câu 2)
Giả sử tồn tại MP cố định đó. Gọi PTMP mà \((d_k)\) luôn đi qua là
\((P):a(x-3)+b(y+1)+c(z+1)=0\) $(1)$
Ta chỉ cần xác định được \(a,b,c\) nghĩa là đã chứng minh được sự tồn tại của mặt phẳng cố định đó.
Vì \(d_k\in (P)\forall k\Rightarrow \overrightarrow{u_{d_k}}\perp \overrightarrow {n_P}\)
\(\Rightarrow a(k+1)+b(2k+3)+c(1-k)=0\) với mọi $k$
\(\Leftrightarrow k(a+2b-c)+(a+3b+c)=0\) với mọi $k$
\(\Leftrightarrow \left\{\begin{matrix} a+2b-c=0\\ a+3b+c=0\end{matrix}\right.\)
Từ đây ta suy ra \(a=\frac{-5b}{2}\) và \(c=\frac{-b}{2}\)
Thay vào \((1)\) và triệt tiêu \(b\) (\(b\neq 0\) bởi vì nếu không thì \(a=c=0\) mặt phẳng không xác định được)
\(\Rightarrow (P): -5x+2y-z+16=0\)
\((d_k)\parallel (6x-y-3z-13=0(1),x-y+2z-3=0(2))\)
\(\Leftrightarrow \overrightarrow {u_{d_k}}\perp \overrightarrow {n_1},\overrightarrow{n_2}\)\(\Rightarrow \overrightarrow{u_{d_k}}\parallel[\overrightarrow{n_1},\overrightarrow{n_2}]\)
Mà \(\overrightarrow{n_1}=(6,-1,-3);\overrightarrow{n_2}=(1,-1,2)\)
\(\Rightarrow \overrightarrow{u_{d_k}}\parallel(-5,-15,-5)\) hay \(\frac{k+1}{-5}=\frac{2k+3}{-15}=\frac{1-k}{-5}\Rightarrow k=0\)
Câu 1 mình đặt ẩn nhưng dài quá nhác viết, với lại mình thấy nó không hay và hiệu quả. Mình nghĩ với cách cho giá trị AB,CD cụ thể thế kia thì chắc chắn có cách nhanh gọn hơn. Nếu bạn có lời giải rồi thì post lên cho mình xem ké với.
\(I_1=\int cos\left(\frac{\pi x}{2}\right)dx-\int\frac{2}{6x+5}dx=\frac{2}{\pi}\int cos\left(\frac{\pi x}{2}\right)d\left(\frac{\pi x}{2}\right)-\frac{1}{3}\int\frac{d\left(6x+5\right)}{6x+5}\)
\(=\frac{2}{\pi}sin\left(\frac{\pi x}{2}\right)-\frac{1}{3}ln\left|6x+5\right|+C\)
\(I_2=-\frac{1}{2}\int\left(4-x^4\right)^{\frac{1}{2}}d\left(4-x^4\right)=-\frac{1}{2}.\frac{\left(4-x^4\right)^{\frac{3}{2}}}{\frac{3}{2}}+C=\frac{-\sqrt{\left(4-x^4\right)^3}}{3}+C\)
\(I_3=2\int e^{\frac{1}{2}\left(4+x^2\right)}d\left(\frac{1}{2}\left(4+x^2\right)\right)=2e^{\frac{1}{2}\left(4+x^2\right)}+C=2\sqrt{e^{4+x^2}}+C\)
\(I_4=-\frac{1}{2}\int\left(1-x^2\right)^{\frac{1}{3}}d\left(1-x^2\right)=-\frac{1}{2}.\frac{\left(1-x^2\right)^{\frac{4}{3}}}{\frac{4}{3}}+C=-\frac{3}{8}\sqrt[3]{\left(1-x^2\right)^4}+C\)
\(I_5=\int e^{sinx}d\left(sinx\right)=e^{sinx}+C\)
\(I_6=\int\frac{d\left(1+sinx\right)}{1+sinx}=ln\left(1+sinx\right)+C\)
\(I_7=\int\left(x+1\right)\sqrt{x-1}dx\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow dx=2tdt\)
\(\Rightarrow I_7=\int\left(t^2+2\right).t.2t.dt=\int\left(2t^4+4t^2\right)dt=\frac{2}{5}t^5+\frac{4}{3}t^3+C\)
\(=\frac{2}{5}\sqrt{\left(1-x\right)^5}+\frac{4}{3}\sqrt{\left(1-x\right)^3}+C\)
\(I_8=\int\left(2x+1\right)^{20}dx\)
Đặt \(2x+1=t\Rightarrow2dx=dt\Rightarrow dx=\frac{1}{2}dt\)
\(\Rightarrow I_8=\frac{1}{2}\int t^{20}dt=\frac{1}{42}t^{21}+C=\frac{1}{42}\left(2x+1\right)^{21}+C\)
\(I_9=-3\int\left(1-x^3\right)^{-\frac{1}{2}}d\left(1-x^3\right)=-3.\frac{\left(1-x^3\right)^{\frac{1}{2}}}{\frac{1}{2}}+C=-6\sqrt{1-x^3}+C\)
\(I_{10}=\int\frac{x}{\sqrt{2x+3}}dx\)
Đặt \(\sqrt{2x+3}=t\Rightarrow x=\frac{1}{2}t^2-\frac{3}{2}\Rightarrow dx=t.dt\)
\(\Rightarrow I_{10}=\int\frac{\frac{1}{2}t^2-\frac{3}{2}}{t}.t.dt=\frac{1}{2}\int\left(t^2-3\right)dt=\frac{2}{3}t^3-\frac{3}{2}t+C\)
\(=\frac{2}{3}\sqrt{\left(2x+3\right)^3}-\frac{3}{2}\sqrt{2x+3}+C\)
\(\left(\frac{3}{4}+\frac{1}{2}\right)\cdot\frac{5}{7}\)
=\(\frac{5}{4}\cdot\frac{5}{7}\)
=\(\frac{25}{28}\)
Cách 2 cữa bạn ơi