\(\Delta\). Trên   ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2016

A C D B (P) (Q)

Do \(\left(P\right)\perp\left(Q\right)\) và \(\left(P\right)\cap\left(Q\right)=\Delta\)

và \(DB\perp\left(\Delta\right)\left(DB\in\left(Q\right)\right)\)

Nên \(DB\perp\left(P\right)\Rightarrow DB\perp BC\)

Tương tự ta có :

                \(CA\perp AD\)

Vì \(\widehat{CAD}=\widehat{DBC}=90^0\) nên CD chính là  đường kính hình cầu ngoại tiếp tứ diện ABCD.

Gọi R là bán kính của hinh cầu này thì :

                \(R=\frac{1}{2}CD\)  (1)

Theo định lý Pitagoc trong 2 tam giác vuông CAD, ABD ta có :

        \(CD^2=CA^2+AD^2=CA^2+BA^2+BD^2=3a^2\)

                                         \(\Rightarrow CD=a\sqrt{3}\) (2)

Từ (1) và (2) suy ra \(R=\frac{a\sqrt{3}}{2}\)

1 tháng 4 2017

Giải bài 6 trang 50 sgk Hình học 12 | Để học tốt Toán 12

Qua O vẽ đường thẳng d vuông góc với (ABCD)

Khi đó d là trục đường tròn ngoại tiếp hình vuông ABCD

Gọi H là trung điểm của cạnh SA

Trong mặt phẳng (SAO) đường trung trực của đoạn SA cắt đường thẳng SO tại I , ta có: \(\Delta SAO\) đòng dạng \(\Delta SIH\)

\(\Rightarrow\dfrac{SA}{SO}=\dfrac{SI}{SH}\Leftrightarrow SI=\dfrac{SA.SH}{SO}=\dfrac{SA^2}{2SO}\)

\(SA^2=SO^2+OA^2=\left(\dfrac{a}{2}\right)^2+\left(\dfrac{a\sqrt{2}}{2}\right)^2=\dfrac{3a^2}{4}\)

\(\Leftrightarrow SA=\dfrac{a\sqrt{3}}{2}\)

Khi đó \(SI=\dfrac{3a^2}{\dfrac{4}{2.\dfrac{a}{2}}}=\dfrac{3a}{4}\)

Mặt khác \(\left\{{}\begin{matrix}IS=IA\\IA=IB=IC=ID\end{matrix}\right.\)

\(\Rightarrow IS=IA=IB=IC=ID=\dfrac{3a}{4}\)

Vậy mặt cầu ngoại tiếp hình chóp S.ABCD có tâm là I và bán kính \(R=SI=\dfrac{3a}{4}\)

Diện tích mặt cầu là: \(S=4\pi R^2=4\pi.\left(\dfrac{3a}{4}\right)^2=\dfrac{9\pi\pi^2}{4}\)

Thể tích khối cầu là: \(V=\dfrac{4}{3}\pi R^2=\dfrac{4}{3}\pi.\left(\dfrac{3a}{4}\right)^2=\dfrac{9\pi\pi^2}{16}\)

20 tháng 5 2017

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

25 tháng 4 2017

 

13 tháng 1 2018

Cho hai đường thăng \(\Delta\) và \(\Delta'\) chéo nhau nhận AA' làm đoạn vuông góc chung, trong đó A thuộc \(\Delta\)  và A' thuộc \(\Delta'\). Gọi (P) là mặt phẳng qua A vuông góc với \(\Delta'\) và d là hình chiếu vuông góc của \(\Delta\) trên mặt phẳng (P). Đặt AA' = a, góc nhọn giữa \(\Delta\) và d là \(\alpha\). Mặt phẳng (Q) song song với mặt phẳng (P) cắt \(\Delta\) và \(\Delta'\) lần lượt tại...
Đọc tiếp

Cho hai đường thăng \(\Delta\) và \(\Delta'\) chéo nhau nhận AA' làm đoạn vuông góc chung, trong đó A thuộc \(\Delta\)  và A' thuộc \(\Delta'\). Gọi (P) là mặt phẳng qua A vuông góc với \(\Delta'\) và d là hình chiếu vuông góc của \(\Delta\) trên mặt phẳng (P). Đặt AA' = a, góc nhọn giữa \(\Delta\) và d là \(\alpha\). Mặt phẳng (Q) song song với mặt phẳng (P) cắt \(\Delta\) và \(\Delta'\) lần lượt tại M và M'. Gọi \(M_1\) là hình chiếu vuông góc của M trên mặt phẳng (P)

a) Chứng minh 5 điểm A, A', M, M', \(M_1\) cùng nằm trên mặt cầu (S). Xác định tâm O của (S). Tính bán kính của (S) theo \(a,\alpha\) và khoảng cách x giữa hai mặt phẳng (P), (Q) ?

b) Khi x thay đổi, tâm O mặt cầu (S) di động trên đường nào ? Chứng minh rằng khi (Q) thay đổi mặt cầu (S) luôn luôn đi qua một đường tròn cố định

1
20 tháng 5 2017

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

20 tháng 5 2017

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

a) Gọi H là hình chiếu vuông góc của tâm O trên mặt phẳng \(\left(\alpha\right)\).

Theo giả thiết ta có \(\widehat{OAH}=30^0\)

Do đó : \(HA=OA\cos30^0=r\dfrac{\sqrt{3}}{2}\)

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

1 tháng 4 2016

Gọi O là giao điểm của AC và BD \(\Rightarrow A_1O\perp\left(ABCD\right)\)

Gọi E là trung điểm của AD \(\Rightarrow\begin{cases}OE\perp AD\\A_1E\perp AD\end{cases}\)

Suy ra \(\widehat{A_1EO}\) là góc giữa 2 mặt phẳng \(\left(ADD_1A_1\right)\) và \(\left(ABCD\right)\) \(\Rightarrow\widehat{A_1EO}=60^o\)

Suy ra : \(A_1O=OE.\tan\widehat{A_1EO}=\frac{AB}{2}\tan\widehat{A_1EO}=\frac{a\sqrt{3}}{2}\)

Diện tích đáy \(S_{ABCD}=AB.AD=a^2\sqrt{3}\)

Thể tích \(V_{ABCD.A'B'C'D'}=S_{ABCD}.A_1O=\frac{3a^2}{2}\)

Ta có : \(B_1C||A_1D\)\(\Rightarrow B_1C||\left(A_1CD\right)\)

                             \(\Rightarrow d\left(B_1,\right)\left(A_1BD\right)=d\left(C,\left(A_1BD\right)\right)=CH\)

                            \(\Rightarrow d\left(B_1,\right)\left(A_1BD\right)=CH=\frac{CD.CB}{\sqrt{CD^2+CB^2}}=\frac{a\sqrt{3}}{2}\)

 

1 tháng 4 2016

A E D C B O A1 B1 C1 D1

20 tháng 5 2017

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

Vậy \(SB^2=\dfrac{6a^2}{9}+4a^2=\dfrac{42a^2}{9}\)

Do đó \(SB=\dfrac{a\sqrt{42}}{3}\)

Ta suy ra :

\(r=\dfrac{SB}{2}=\dfrac{a\sqrt{42}}{6}\)

26 tháng 4 2016

Tập xác định : \(D=R\backslash\left\{1\right\}\)

Ta có \(y'=\frac{-1}{\left(x-1\right)^2}\)

Gọi \(M\left(x_o;y_0\right)\) là tiếp điểm

a) Ta có \(y_0=0\Rightarrow x_0=\frac{1}{2}\Rightarrow y'\left(x_0\right)=-4\)

Phương trình tiếp tuyến là : \(y=-4x+2\)

b) Phương trình hoành độ giao điểm của d và (C) :

\(\frac{2x-1}{x-1}=x+1\Leftrightarrow x^2-2x=0\Leftrightarrow x=0;x=2\)

\(x_0=0\Rightarrow\) phương trình tiếp tuyến là : \(y=-x\left(x-0\right)+1=-x+1\)

\(x_0=2\Rightarrow\) phương trình tiếp tuyến là : \(y=-x+5\)

c) Ta có phương trình của đường thẳng \(\Delta:y-\frac{2x_0-1}{x_0-1}=\frac{-1}{\left(x_0-1\right)^2}\left(x-x_0\right)\)

hay \(\Delta:\frac{1}{\left(x_0-1\right)^2}x+y-\frac{x_0}{\left(x_0-1\right)^2}-\frac{2x_0-1}{x_0-1}=0\)

Ta có : \(d\left(I;\Delta\right)=\frac{\left|\frac{2}{x_0-1}\right|}{\sqrt{\frac{1}{\left(x_0-1\right)^4}+1}}\le\sqrt{2}\)

Đẳng thức xảy ra \(\Leftrightarrow\left(x_0-1\right)^4=1\Leftrightarrow\left[\begin{array}{nghiempt}x_0=0\\x_0=2\end{array}\right.\)

Suy ra có 2 tiếp tuyến là : \(\Delta_1:y=-x+1\)

                                      \(\Delta_2:y=-x+5\)

d) Ta có  : \(\Delta Ox=A\left(2x^2_0-2x_0+1;0\right)\)

                \(OA=1\Leftrightarrow\left|2x^2_0-2x_0+1\right|=1\Leftrightarrow\left[\begin{array}{nghiempt}x_0=0\\x_0=1\end{array}\right.\)

Suy ra phương trình tiếp tuyến là : \(y=-x+1\)