Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{6^2+8^2}=10\) (cm) => Tg DEF vuông tại D
a) DK=\(\dfrac{DE.DF}{EF}=\dfrac{6.8}{10}=4,8\left(cm\right)\)
FK=\(\dfrac{8^2}{10}=6,6\left(cm\right)\)
b) \(\sin E=\dfrac{DK}{DE}=\dfrac{4,8}{6}=0,8\Rightarrow E\approx53\)
=> F=37
c) DM là tia phân giác của góc EDF, nên ta có:
\(\dfrac{EM}{DE}=\dfrac{MF}{DF}=\dfrac{EF}{DE+DF}=\dfrac{10}{6+8}=\dfrac{5}{7}\)
=> EM=\(\dfrac{30}{7}\)
MF=\(\dfrac{40}{7}\)
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\)
\(\Leftrightarrow\frac{AB^2}{AC^2}=\frac{BH\cdot BC}{CH\cdot BC}=\frac{BH}{CH}\)(đpcm)
b) Ta có: \(\frac{BH}{CH}=\frac{AB^2}{AC^2}\)
\(\Leftrightarrow\left(\frac{BH}{CH}\right)^2=\left(\frac{AB^2}{AC^2}\right)^2\)
\(\Leftrightarrow\frac{BH^2}{CH^2}=\frac{AB^4}{AC^4}\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:
\(HB^2=BE\cdot AB\)
\(\Leftrightarrow BE=\frac{HB^2}{AB}\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:
\(HC^2=CF\cdot CA\)
\(\Leftrightarrow CF=\frac{HC^2}{CA}\)
Ta có: \(\frac{BE}{CF}=\frac{HB^2}{AB}:\frac{HC^2}{AC}=\frac{HB^2}{AB}\cdot\frac{AC}{HC^2}=\frac{HB^2}{HC^2}\cdot\frac{AC}{AB}=\frac{AB^4}{AC^4}\cdot\frac{AC}{AB}\)
hay \(\frac{BE}{CF}=\frac{AB^3}{AC^3}\)(đpcm)
CHO MÌNH SỬA LẠI CÂU 2: Biết chu vi \(\Delta ABH=30cm\)và chu vi \(\Delta ACH=10cm\).Tính chu vi \(\Delta ABC\)
Cô hướng dẫn nhé.
a. Kẻ \(DK\perp BC.\)
Khi đó ta thấy \(IA=IK;DA=DK.\)Lại có \(\Delta HIK\sim\Delta KDC\left(g-g\right)\Rightarrow\frac{IH}{KD}=\frac{IK}{DC}\Rightarrow\frac{IH}{IK}=\frac{KD}{DC}\Rightarrow\frac{IH}{IA}=\frac{DA}{DC}\)
b. Ta có \(BE.AB=BH^2;CF.AC=HC^2\Rightarrow BE.AB.CF.AC=HB^2.HC^2=AH^4\)
\(\Rightarrow BE.CF\left(AB.AC\right)=AH^4\Rightarrow BE.CF.AH.BC=AH^4\Rightarrow BE.CF.BC=AH^3\)
c. Tính \(BE\Rightarrow AE;CF\Rightarrow AC\Rightarrow S_{EHF}\)
Hướng dẫn :
Câu a : Dựa theo định lý py - ta - go đảo
Câu b : Áp dụng hệ thượng lượng
\(\dfrac{1}{DK^2}=\dfrac{1}{DE^2}+\dfrac{1}{DF^2}\)
\(DF^2=FK.EF\)
Câu c : Dùng tỉ số lượng giác .
Câu d : Dựa theo t/c đường phân giác .
\(\dfrac{DE}{EF}=\dfrac{ME}{MF}\)
bạn giải hộ mink phần d đi mà