K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2018

BĐT \(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng)

Dấu "=" xảy ra khi a = b

3 tháng 12 2018

tth: đề bài thiếu đk nhé.

Thiếu đk a,b \(\ge0\)

Đây là AM-GM 2 số

14 tháng 2 2019

\(a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow\frac{a+b}{2}\ge\sqrt{ab}\)

\(\Leftrightarrow\frac{\left(a+b\right)^2}{4}\ge ab\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)( luôn đúng )

=> đpcm

14 tháng 2 2019

\(a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b^2\right)\ge0\) 
(Luôn Đúng)

20 tháng 6 2019

Giả sử \(a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow\left(a+b\right)^2\ge\left(2\sqrt{ab}\right)^2\)

\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(Đúng)

Vậy \(a+b\ge2\sqrt{ab}\)

P/S: Ko chắc , e ms lớp 7

20 tháng 6 2019

Ta có:\(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\sqrt{\left(a+b\right)^2}\ge\sqrt{4ab}\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\left(ĐPCM\right)\)

19 tháng 10 2019

Sửa đề: Chứng minh \(\sqrt{a^3+a}+\sqrt{b^3+b}+\sqrt{c^3+c}\ge2\sqrt{a+b+c}\)

Lời giải đơn giản nhất: (copy trên mạng xuống:V)

27 tháng 8 2019

sai đề rồi bạn ơi

1 tháng 9 2018

Ta có a>=0 ; b>=0

=> √a >=0 ; √b >=0

<=> (√a -√b)2>=0

<=> a-2√ab + b>=0

<=> a+ b>=2√ab

Vậy bất đẳng thức được CM

6 tháng 10 2020

1. BĐT tương đương với \(6\left(a^2+b^2\right)-2ab+8-4\left(a\sqrt{b^2+1}+b\sqrt{a^2+1}\right)\ge0\)

\(\Leftrightarrow\left[a^2-4a\sqrt{b^2+1}+4\left(b^2+1\right)\right]+\left[b^2-4b\sqrt{a^2+1}+4\left(a^2+1\right)\right]\)\(+\left(a^2-2ab+b^2\right)\ge0\)

\(\Leftrightarrow\left(a-2\sqrt{b^2+1}\right)^2+\left(b-2\sqrt{a^2+1}\right)^2+\left(a-b\right)^2\ge0\)(đúng)

=> Đẳng thức không xảy ra

6 tháng 10 2020

2. \(a^4+b^4+c^2+1\ge2a\left(ab^2-a+c+1\right)\)

\(\Leftrightarrow a^4+b^4+c^2+1\ge2a^2b^2-2a^2+2ac+2a\)

\(\Leftrightarrow\left(a^4-2a^2b^2+b^4\right)+\left(c^2-2ac+a^2\right)+\left(a^2-2a+1\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(c-a\right)^2+\left(a-1\right)^2\ge0\)

13 tháng 3 2021

Áp dụng giả thiết \(ab=1\) và bất đẳng thức Cauchy ta có:

\(\dfrac{a^2+b^2}{a-b}=\dfrac{\left(a-b\right)^2+2ab}{a-b}=a-b+\dfrac{2}{a-b}\ge2\sqrt{\dfrac{2\left(a-b\right)}{a-b}}=2\sqrt{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}ab=1\\a-b=\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{\sqrt{6}+\sqrt{2}}{2}\\b=\dfrac{\sqrt{6}-\sqrt{2}}{2}\end{matrix}\right.\)

13 tháng 3 2021

mình ko hiểu cho lắmoho

28 tháng 3 2017

Xét\(\frac{a^2+2}{\sqrt{a^2+1}}=\frac{a^2+1}{\sqrt{a^2+1}}+\frac{1}{\sqrt{a^2+1}}=\sqrt{a^2+1}+\frac{1}{\sqrt{a^2+1}}\)

Áp dụng bất đẳng thức Cô-si với 2 số dương ta được:

\(\sqrt{a^2+1}+\frac{1}{\sqrt{a^2+1}}\ge2\sqrt{\sqrt{a^2+1}.\frac{1}{\sqrt{a^2+1}}}=2\)=>\(\frac{a^2+2}{\sqrt{a^2+1}}\ge2\)(đpcm)

Dấu "=" xảy ra khi a=0

17 tháng 3 2016

câu a dễ mà mình học lớp 6 thôi

do a>0 , b> 0 nên a , b là số nguyên dương

=> để a.b=1

thì a=1

b=1

=>(1+1).(1+1)

=    2.2

=4 

4 =4

=> (a+1).(b+1) \(\ge\)

17 tháng 3 2016

bài 2 : đó là bất đẳng thức cô shi đó bạn dấu ''='' xảy ra khi a=b