Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sai à bạn? Vì với a = 0, phân thức đại số trên bằng \(\sqrt{2}< 2\).
\(\frac{a^2+a+2}{\sqrt{a^2+a+2}}\ge2\)
\(\Leftrightarrow\sqrt{a^2+a+2}\ge2\)
\(\Leftrightarrow a^2+a+2\ge4\)
\(\Leftrightarrow a^2+a-2\ge0\)
\(\Leftrightarrow a^2+2a-a-2\ge0\)
\(\Leftrightarrow a\left(a+2\right)-\left(a+2\right)\ge0\)
\(\Leftrightarrow\left(a+2\right)\left(a-1\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}a\le-2\\a\ge1\end{matrix}\right.\)
Đề bài sai bạn ơi, không chứng minh được, chỉ tìm được ra khoảng của x thôi
Ta có: \(VT=\frac{a^2}{\left(b-c\right)^2}+\frac{b^2}{\left(c-a\right)^2}+\frac{c^2}{\left(a-b\right)^2}\)
\(=\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)^2-2\left[\frac{ab}{\left(b-c\right)\left(c-a\right)}+\frac{bc}{\left(c-a\right)\left(a-b\right)}+\frac{ca}{\left(a-b\right)\left(b-c\right)}\right]\)
\(=\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)^2-2\left[\frac{ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\right]\)
\(=\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)^2+2\ge2\) \(\left(Q.E.D\right)\)
Áp dụng bđt AM - GM ta có :
\(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{a^2}}\ge\sqrt{2\frac{a^2}{b^2}}+\sqrt{2\frac{b^2}{a^2}}=\sqrt{2}\frac{a}{b}+\sqrt{2}\frac{b}{a}\)
\(=\sqrt{2}\left(\frac{a}{b}+\frac{b}{a}\right)\ge\sqrt{2}.2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\sqrt{2}\)
Lời giải:
Áp dụng BĐT Bunhiacopxky cho $a,b$ dương:
\(\left(\frac{1}{a^2}+\frac{1}{b^2}\right)(1+1)\geq \left(\frac{1}{a}+\frac{1}{b}\right)^2\)
\(\left(\frac{1}{a}+\frac{1}{b}\right)(a+b)\geq (1+1)^2=4\Rightarrow \frac{1}{a}+\frac{1}{b}\geq \frac{4}{a+b}\)
Do đó:
\(4=\left(\frac{1}{a^2}+\frac{1}{b^2}\right).2\geq \left(\frac{1}{a}+\frac{1}{b}\right)^2\geq \left(\frac{4}{a+b}\right)^2\)
\(\Rightarrow 4(a+b)^2\geq 16\Rightarrow (a+b)^2\geq 4\Rightarrow a+b\geq 2\) (đpcm)
Dấu "=" xảy ra khi $a=b=1$
\(\frac{1}{a^2}=\frac{1}{\left(bc\right)^2}\)
\(\Rightarrow\frac{1}{a^2}+1=\frac{1}{\left(bc\right)^2}+1\ge2\frac{1}{bc}=2a\)
Xét\(\frac{a^2+2}{\sqrt{a^2+1}}=\frac{a^2+1}{\sqrt{a^2+1}}+\frac{1}{\sqrt{a^2+1}}=\sqrt{a^2+1}+\frac{1}{\sqrt{a^2+1}}\)
Áp dụng bất đẳng thức Cô-si với 2 số dương ta được:
\(\sqrt{a^2+1}+\frac{1}{\sqrt{a^2+1}}\ge2\sqrt{\sqrt{a^2+1}.\frac{1}{\sqrt{a^2+1}}}=2\)=>\(\frac{a^2+2}{\sqrt{a^2+1}}\ge2\)(đpcm)
Dấu "=" xảy ra khi a=0