\(x^2+y^2+z^2+14\ge4x-2y-6z\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2018

Ta có:

\(x^2+y^2+z^2-4x+2y+6z\)

\(=\left(x^2-4x+4\right)+\left(y^2+2y+1\right)+\) \(\left(z^2+6z+9\right)\)

\(=\left(x-2\right)^2+\left(y+1\right)^2+\left(z+3\right)^2\)

Mà : \(\left(x-2\right)^2\ge0\forall x\)

        \(\left(y+1\right)^2\ge0\forall y\)

          \(\left(z+3\right)^2\ge0\forall z\)

\(\Rightarrow\left(x-2\right)^2+\left(y+1\right)^2+\left(z+3\right)^2\ge0\forall x;y;z\) ( luôn đúng )

\(\Rightarrow x^2+y^2+z^2+14\ge4x-2y-6z\left(đpcm\right)\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x-2=0\\y+1=0\\z+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=-1\\z=-3\end{cases}}\)

Vậy ....

9 tháng 3 2019

Cái này phải là bất đẳng thức bạn nhé!

\(x^2+y^2+z^2+14\ge4x-2y-6z\Leftrightarrow x^2-4x+4+y^2+2y+1+z^2+6z+9\ge0\)

\(\Leftrightarrow\left(x+2\right)^2+\left(y-1\right)^2+\left(z+3\right)^2\ge0\)

Bất đẳng thức cuối đúng vì mỗi hạng tử không âm. Do đó bất đẳng thức đã cho là đúng.

Dấu bằng xảy ra khi và chỉ khi \(x=-2;y=1;z=-3\)

17 tháng 8 2015

Đề đúng

\(x^2+y^2+z^2=4x-2y+6z-14\)

\(\Leftrightarrow x^2+y^2+z^2-4x+2y-6z+14=0\)

\(\Leftrightarrow x^2-4x+4+y^2+2y+1+z^2-6z+9=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(y+1\right)^2+\left(z-3\right)^2=0\)

\(\Leftrightarrow x-2=0;y+1=0;z-3=0\)

\(\Leftrightarrow x=2;y=-1;z=3\)

14 tháng 7 2019

\(x^2+y^2+z^2=4x-2y+6z-14\Leftrightarrow x^2-4x+y^2+2y+z^2-6z+14=0\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2+2y+1\right)+\left(z^2-6z+9\right)=0\Leftrightarrow\left(x-2\right)^2+\left(y+1\right)^2+\left(z-3\right)^2=0matkhac:\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left(y+1\right)^2\ge0\\\left(z-3\right)^2\ge0\end{matrix}\right.\Rightarrow\left(x-2\right)^2+\left(y+1\right)^2+\left(z-3\right)^2\ge0mà:\left(x-2\right)^2+\left(y+1\right)^2+\left(z-3\right)^2=0\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y+1\right)^2=0\\\left(z-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\\z-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\\z=3\end{matrix}\right..Vậy:x=2;y=-1;z=3\)

1 tháng 12 2019

Ta có (x2+4x+4)+(y2+2y+1)+(z^2+6z+9)>=0

3 tháng 10 2017

A) x2+4y22+z22-4x-6z+15>0 <=> (x2-2×2×x+22)+4y2+(z2-2×3×z+32) +(15 -22-32) >0

<=>(x-2)2+4y22+(z-3)2

3 tháng 10 2017

B) giải

(2X)2+ 2×2X×1 +1 >=0 với mọi X (   (2x+1) )

=> (2x+1)2+2 >0

3 tháng 10 2016

\(x^2+y^2+z^2+2x-4y+6z=-14\)

\(x^2+y^2+z^2+2x-4y+6z+14=0\)

\(x^2+2x+1+y^2-4y+4+z^2+6z+9=0\)

\(\left(x+1\right)^2+\left(y-2\right)^2+\left(z+3\right)^2=0\)

\(\left(x+1\right)^2=0\)

x+1 = 0

x = -1

\(\left(y-2\right)^2=0\)

y - 2 = 0

y = 2

\(\left(z+3\right)^2=0\)

z + 3 = 0

z = -3

vậy x + y + z = -1 + 2 + (-3) = -2

12 tháng 10 2016

\(^{x^2+y^2+z^2+2x-4y+6z=-14}\)
\(=x^2+2x+1+y^2-4y+4+z^2+6z+9=-14+14=0\)\(=\left(x+1\right)^2+\left(y-2\right)^2+\left(z+3\right)^2=0\)\(\Rightarrow\left(x+1\right)^2=0;\left(y-2\right)^2=0;\left(z+3\right)^2=0\)\(\Rightarrow x+1=0;y-2=0;z+3=0\)\(\Rightarrow x=-1;y=2;z=-3\Rightarrow x+y+z=-2\)

16 tháng 10 2016

-2

tk nhe

xin do

bye