Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(^{x^2+y^2+z^2+2x-4y+6z=-14}\)
\(=x^2+2x+1+y^2-4y+4+z^2+6z+9=-14+14=0\)\(=\left(x+1\right)^2+\left(y-2\right)^2+\left(z+3\right)^2=0\)\(\Rightarrow\left(x+1\right)^2=0;\left(y-2\right)^2=0;\left(z+3\right)^2=0\)\(\Rightarrow x+1=0;y-2=0;z+3=0\)\(\Rightarrow x=-1;y=2;z=-3\Rightarrow x+y+z=-2\)
x2+y2+z2+2x-4y+6z+14=0
(x+1)2+(y-2)2+(z+3)2=0
=>x+1=0=>x=-1
y-2=0=>y=2
z+3=0=>z=-3
=>x+y+z=............
x^2+y^2+z^2+2x-4y+6z+14=0
x^2+y^2+z^2+2x-4y+6z+1+4+9 = 0
(x+1)^2+(y-2)^2+(z+3)^2 =0
=> x+1=0 -> x = -1
=> y-2=0 -> y=2
=> z+3=0->z=-3
vậy x+y+z = -2
b, x2 +y2+z2 +2x-4y-6z+14=0
<=> (x2+2x+1)+(y2-4y+4)+(z2-6z+9)=0
<=> (x+1)2+(y-2)2+(z-3)2=0
=>(x+1)2=(y-2)2=(z-3)2=0
=>x+1=y-2=z-3=0
=> x=-1; y=2; z=3
c, 2x2+y2-6x-4y+2xy+5=0
<=> (x2+y2+4+2xy-4x-4y)+(x2-2x+1)=0
<=> (x+y-2)2+(x-1)2=0
=> (x+y-2)2=(x-1)2=0
=>x+y-2=x-1=0
=>x=1; y=1
Câu b:
Ta có: \(x^2 + 4y^2 + z^2 - 2x - 6z + 8y + 15\)
\(= (x^2 - 2x +1) + (4y^2 - 8y + 4) + (z^2 - 6z +9) +1\)
\(= (x-1)^2 + (2y-2)^2 + (z-3)^2 + 1\)
Mà \((x-1)^2 \geq 0; (2y-2)^2 \geq 0; (z-3)^2\geq 0\)
\(\implies\) \((x-1)^2+(2y-2)^2 +(z-3)^2\geq 0\)
\(\implies\)\((x-1)^2+(2y-2)^2 +(z-3)^2+1> 0\)
Bài làm:
Ta có: \(x^2+4y^2+z^2-2x-6z+8y+15\)
\(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1\)
\(=\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2+1\ge1>0\left(\forall x,y,z\right)\)
x2 + 4y2 + z2 - 2x - 6z + 8y + 15
= ( x2 - 2x + 1 ) + ( 4y2 + 8y + 4 ) + ( z2 - 6z + 9 ) + 1
= ( x - 1 )2 + ( 2y + 2 )2 + ( z - 3 )2 + 1 ≥ 1 > 0 ∀ x,y,z ( đpcm )
a) \(\left(x\right)^2+2\left(x\right)\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
Nên \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
b) \(\left(x^2-2x+1\right)+\left(4y^2+8y+1\right)+\left(z^2-6z+9\right)+4\)
\(=\left(x-1\right)^2+\left(2y+1\right)^2+\left(z-3\right)^2+4\)
Vì \(\left(x-1\right)^2+\left(2y+1\right)^2+\left(z-3\right)^2\ge0\forall x,y,z\)
Nên \(\left(x-1\right)^2+\left(2y+1\right)^2+\left(z-3\right)^2+4>0\forall x,y,z\)
A) x2+4y22+z22-4x-6z+15>0 <=> (x2-2×2×x+22)+4y2+(z2-2×3×z+32) +(15 -22-32) >0
<=>(x-2)2+4y22+(z-3)2
B) giải
(2X)2+ 2×2X×1 +1 >=0 với mọi X ( (2x+1)2 )
=> (2x+1)2+2 >0
làm tắt ko hiểu thì hỏi
a) \(=x^2+2.xy.\frac{1}{2}+\frac{1}{4}y^2-\frac{1}{4}y^2+y^2+1\)
\(=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\)
b) \(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6x+9\right)+1\)
\(=\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1>0\)
\(x^2+y^2+z^2+2x-4y+6z=-14\)
\(x^2+y^2+z^2+2x-4y+6z+14=0\)
\(x^2+2x+1+y^2-4y+4+z^2+6z+9=0\)
\(\left(x+1\right)^2+\left(y-2\right)^2+\left(z+3\right)^2=0\)
\(\left(x+1\right)^2=0\)
x+1 = 0
x = -1
\(\left(y-2\right)^2=0\)
y - 2 = 0
y = 2
\(\left(z+3\right)^2=0\)
z + 3 = 0
z = -3
vậy x + y + z = -1 + 2 + (-3) = -2