Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+y^2+z^2=4x-2y+6z-14\Leftrightarrow x^2-4x+y^2+2y+z^2-6z+14=0\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2+2y+1\right)+\left(z^2-6z+9\right)=0\Leftrightarrow\left(x-2\right)^2+\left(y+1\right)^2+\left(z-3\right)^2=0matkhac:\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left(y+1\right)^2\ge0\\\left(z-3\right)^2\ge0\end{matrix}\right.\Rightarrow\left(x-2\right)^2+\left(y+1\right)^2+\left(z-3\right)^2\ge0mà:\left(x-2\right)^2+\left(y+1\right)^2+\left(z-3\right)^2=0\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y+1\right)^2=0\\\left(z-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\\z-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\\z=3\end{matrix}\right..Vậy:x=2;y=-1;z=3\)
=(x2+2xy+y2)+(y2-4yz+4z2)+(y2-2y+1)+(z2-2z+1)-4x-2y-4z+5
=(x+y)2-4(x+y)+4 +(y-2z)2+2(y-2z)+1 +(y-1)2+(z-1)2
=(x+y-2)2+(y-2z+1)2+(y-1)2+(z-1)2\(\ge0\)\(\forall_{x,y,z}\)
Lai co (x+y-2)2+(y-2z+1)2+(y-1)2+(z-1)2\(\le\)0
=> (x+y-2)2+(y-2z+1)2+(y-1)2+(z-1)2=0
Dau = xay ra khi x=y=z=1
Ta có:
\(x^2+y^2+z^2-4x+2y+6z\)
\(=\left(x^2-4x+4\right)+\left(y^2+2y+1\right)+\) \(\left(z^2+6z+9\right)\)
\(=\left(x-2\right)^2+\left(y+1\right)^2+\left(z+3\right)^2\)
Mà : \(\left(x-2\right)^2\ge0\forall x\)
\(\left(y+1\right)^2\ge0\forall y\)
\(\left(z+3\right)^2\ge0\forall z\)
\(\Rightarrow\left(x-2\right)^2+\left(y+1\right)^2+\left(z+3\right)^2\ge0\forall x;y;z\) ( luôn đúng )
\(\Rightarrow x^2+y^2+z^2+14\ge4x-2y-6z\left(đpcm\right)\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x-2=0\\y+1=0\\z+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=-1\\z=-3\end{cases}}\)
Vậy ....
\(^{x^2+y^2+z^2+2x-4y+6z=-14}\)
\(=x^2+2x+1+y^2-4y+4+z^2+6z+9=-14+14=0\)\(=\left(x+1\right)^2+\left(y-2\right)^2+\left(z+3\right)^2=0\)\(\Rightarrow\left(x+1\right)^2=0;\left(y-2\right)^2=0;\left(z+3\right)^2=0\)\(\Rightarrow x+1=0;y-2=0;z+3=0\)\(\Rightarrow x=-1;y=2;z=-3\Rightarrow x+y+z=-2\)
\(x^2+y^2+z^2=4x-2y+6z-14\)
\(\Leftrightarrow x^2-4x+4+y^2+2y+1+z^2-6z+9=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y+1\right)^2+\left(z-3\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\y+1=0\\z-3=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-1\\z=3\end{cases}}}\)
\(\Leftrightarrow\) \(x^2\)+ \(y^2\) + \(z^2\) - \(4x\)+ \(2y\) - \(6z\) + \(14\) \(=\) \(0\)
\(\Leftrightarrow\) ( \(x^2\) - \(4x\) + \(4\) ) + ( \(y^2\) + \(2y\) + \(1\) ) \(=\) \(0\)
\(\Leftrightarrow\) ( \(x-2\))2 + \(\left(y+1\right)^2\) + \(\left(z-3\right)^2\) \(=\) \(0\)
\(\Leftrightarrow\) \(\hept{\begin{cases}x=2\\y=-1\\z=3\end{cases}}\)
Cái này phải là bất đẳng thức bạn nhé!
\(x^2+y^2+z^2+14\ge4x-2y-6z\Leftrightarrow x^2-4x+4+y^2+2y+1+z^2+6z+9\ge0\)
\(\Leftrightarrow\left(x+2\right)^2+\left(y-1\right)^2+\left(z+3\right)^2\ge0\)
Bất đẳng thức cuối đúng vì mỗi hạng tử không âm. Do đó bất đẳng thức đã cho là đúng.
Dấu bằng xảy ra khi và chỉ khi \(x=-2;y=1;z=-3\)
x2+y2+z2+2x-4y+6z+14=0
(x+1)2+(y-2)2+(z+3)2=0
=>x+1=0=>x=-1
y-2=0=>y=2
z+3=0=>z=-3
=>x+y+z=............
x^2+y^2+z^2+2x-4y+6z+14=0
x^2+y^2+z^2+2x-4y+6z+1+4+9 = 0
(x+1)^2+(y-2)^2+(z+3)^2 =0
=> x+1=0 -> x = -1
=> y-2=0 -> y=2
=> z+3=0->z=-3
vậy x+y+z = -2
Đề đúng
\(x^2+y^2+z^2=4x-2y+6z-14\)
\(\Leftrightarrow x^2+y^2+z^2-4x+2y-6z+14=0\)
\(\Leftrightarrow x^2-4x+4+y^2+2y+1+z^2-6z+9=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y+1\right)^2+\left(z-3\right)^2=0\)
\(\Leftrightarrow x-2=0;y+1=0;z-3=0\)
\(\Leftrightarrow x=2;y=-1;z=3\)