K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x+y}{5+2}=\dfrac{221}{7}\)

=>\(\left\{{}\begin{matrix}x=\dfrac{221}{7}\cdot5=\dfrac{1105}{7}\\y=\dfrac{221}{7}\cdot2=\dfrac{442}{7}\end{matrix}\right.\)

15 tháng 11 2021

\(\left(x\div y\right)^2=\frac{x^2}{y^2}=\frac{16}{9}\Rightarrow\frac{x^2}{16}=\frac{y^2}{9}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x^2}{16}=\frac{y^2}{9}=\frac{x^2+y^2}{16+9}=\frac{100}{25}=4\)

Do đó:
\(\frac{x^2}{16}=4\Rightarrow x^2=16.4\Rightarrow x^2=64\Rightarrow x^2=8^2\Rightarrow x=\pm8\)\(\frac{y^2}{9}=4\Rightarrow y^2=9.4\Rightarrow y^2=36\Rightarrow y^2=6^2\Rightarrow y=\pm6\)               

Vậy \(x=\left(8;-8\right);y=\left(6;-6\right)\)

15 tháng 11 2021

Hoặc có thể làm.

\(\left(x\div y\right)^2=\frac{16}{9}\)

\(\Rightarrow\)\(x^2\div y^2=\frac{16}{9}\)

\(\Rightarrow\)\(x^2=\frac{16}{9}.y^2\)

\(\Rightarrow\)\(\frac{16}{9}.y^2+y^2=100\)

\(\Rightarrow\)\(y^2.\left(\frac{16}{9}+1\right)=100\)

\(\Rightarrow\)\(\frac{25}{9}.y^2=100\)

\(\Rightarrow\)\(y^2=100\div\frac{25}{9}\)

\(\Rightarrow\)\(y^2=36\)

\(\Rightarrow\)\(y=6;y=-6\)

\(\Leftrightarrow\)\(x^2+36=100\)

\(\Rightarrow\)\(x^2=100-36\)

\(\Rightarrow\)\(x^2=64\)

\(\Rightarrow\)\(x=8;x=-8\)

Vậy \(x=\left(8;-8\right);y=\left(6;-6\right)\)

a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:

X/3 = y/4 = x/3 + y/4 = 28/7 = 4

=> x = 4 × 3 = 12

=> y = 4 × 4 = 16

Vậy x = 12, y = 16

B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:

X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1

=> x = -1 × 2 = -2

=> y = -1 × -5 = 5

Vậy x = -2, y = 5

C) làm tương tự như bài a, b

9 tháng 12 2021

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

x8=y12=z15=x+y−z8+12−15=105=2x8=y12=z15=x+y−z8+12−15=105=2

Do đó: x=16; y=24; z=30

18 tháng 10 2016

a)\(10x=6y\Rightarrow\frac{x}{6}=\frac{y}{10}\Rightarrow\frac{x^2}{36}=\frac{2x^2}{72}=\frac{y^2}{100}\)

Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x^2}{36}=\frac{2x^2}{72}=\frac{y^2}{100}=\frac{2x^2-y^2}{72-100}=\frac{-28}{-28}=1\)

\(\Rightarrow\hept{\begin{cases}x^2=1.36=36\\y^2=1.100=100\end{cases}}\Rightarrow\orbr{\begin{cases}\left(x;y\right)=\left(-6;-10\right)\\\left(x;y\right)=\left(6;10\right)\end{cases}}\)

b)\(\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{x^2}{4}=\frac{y^2}{25}\)

Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x^2}{4}=\frac{y^2}{25}=\frac{x^2-y^2}{4-25}=\frac{4}{-21}\)

\(\Rightarrow\hept{\begin{cases}x^2=\frac{4}{-21}.4=-21\\y^2=\frac{4}{-21}.25=\frac{100}{-21}\end{cases}}\)

Vì \(\hept{\begin{cases}x^2\ge0\\y^2\ge0\end{cases}}\) nên ko có số x;y thỏa mãn 

Có thể bạn chép sai đề phần b rồi

18 tháng 10 2016

thanks để mk tha

12 tháng 11 2021

A nhé

12 tháng 11 2021

Thanks

Bài 4:

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(a=b\cdot k;c=d\cdot k\)

\(\dfrac{a+3b}{b}=\dfrac{bk+3b}{b}=\dfrac{b\left(k+3\right)}{b}=k+3\)

\(\dfrac{c+3d}{d}=\dfrac{dk+3d}{d}=\dfrac{d\left(k+3\right)}{d}=k+3\)

Do đó: \(\dfrac{a+3b}{b}=\dfrac{c+3d}{d}\)

Bài 2:

a: x:y=4:7

=>\(\dfrac{x}{4}=\dfrac{y}{7}\)

mà x+y=44

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{4}=\dfrac{y}{7}=\dfrac{x+y}{4+7}=\dfrac{44}{11}=4\)

=>\(x=4\cdot4=16;y=4\cdot7=28\)

b: \(\dfrac{x}{2}=\dfrac{y}{5}\)

mà x+y=28

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{28}{7}=4\)

=>\(x=4\cdot2=8;y=4\cdot5=20\)

Bài 3:

Đặt \(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=k\)

=>x=5k; y=4k; z=3k

\(M=\dfrac{x+2y-3z}{x-2y+3z}\)

\(=\dfrac{5k+2\cdot4k-3\cdot3k}{5k-2\cdot4k+3\cdot3k}\)

\(=\dfrac{5+8-9}{5-8+9}=\dfrac{4}{6}=\dfrac{2}{3}\)

23 tháng 1

bài 1 đâu hả bạn 

 

Bài 1: 

Ta có:

\(y-x=25\Rightarrow y=25+x\)

Mà \(7x=4y\Rightarrow7x=4\cdot\left(25+x\right)\)

\(7x=100+4x\)

\(\Rightarrow7x-4x=100\)

\(3x=100\)

\(x=\frac{100}{3}\)

2 tháng 11 2023

bài 1 :

Ta có: 7x=4y ⇔ x/4=y/7

áp dụng tính chất dãy tỉ số bằng nhau ta có 

x/4=y/7=(y-x)/(7-4)=100/3

⇒x= 4 x 100/3=400/3 ; y = 7 x 100/3=700/3

bài 2 

ta có x/5 = y/6 ⇔ x/20=y/24

         y/8 = z/7 ⇔ y/24=z/21

⇒x/20=y/24=z/21

ADTCDTSBN(bài 1 có)

x/20=y/24=z/21=(x+y)/(20+24)=69/48=23/16

⇒x= 20 x 23/16 = 115/4

   y= 24x 23/16=138/2

   z=21x23/16=483/16

 

25 tháng 10 2021

Câu 3:

\(\dfrac{x}{y}=\dfrac{5}{9}\Rightarrow\dfrac{x}{5}=\dfrac{y}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{x-y}{5-9}=\dfrac{-40}{-4}=10\)

\(\dfrac{x}{5}=10\Rightarrow x=5\\ \dfrac{y}{9}=10\Rightarrow y=90\)

Câu b:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{5x-2y}{10-6}=\dfrac{28}{4}=7\)

\(\dfrac{x}{2}=7\Rightarrow x=14\\ \dfrac{y}{3}=7\Rightarrow y=21\)

Câu c:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{10}=\dfrac{x+y-1}{5+7-10}=\dfrac{20}{2}=10\)

\(\dfrac{x}{5}=10\Rightarrow x=50\\ \dfrac{y}{7}=10\Rightarrow y=70\\ \dfrac{z}{10}=10\Rightarrow z=100\)

Câu d:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{3x-2y+2z}{9-8+10}=\dfrac{121}{11}=11\)

\(\dfrac{x}{3}=11\Rightarrow x=3\\ \dfrac{y}{4}=11\Rightarrow y=44\\ \dfrac{z}{5}=11\Rightarrow z=55\)

Câu e:

\(\dfrac{x}{4}=\dfrac{y}{2}\Rightarrow\dfrac{x}{8}=\dfrac{y}{6}\\\dfrac{y}{3}=\dfrac{z}{5}\Rightarrow\dfrac{y}{6}=\dfrac{z}{10}\\ \Rightarrow\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{10} \)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{10}=\dfrac{x+y-z}{8+6-10}=\dfrac{20}{4}=5\)

\(\dfrac{x}{8}=5\Rightarrow x=40\\ \dfrac{y}{6}=5\Rightarrow y=30\\ \dfrac{z}{10}=5\Rightarrow z=50\)

 

25 tháng 10 2021

3) \(\Rightarrow\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{x-y}{5-9}=\dfrac{-40}{-4}=10\)

\(\Rightarrow\left\{{}\begin{matrix}x=10.5=50\\y=10.9=90\end{matrix}\right.\)

4) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{5x}{10}=\dfrac{2y}{6}=\dfrac{5x-2y}{10-6}=\dfrac{28}{4}=7\)

\(\Rightarrow\left\{{}\begin{matrix}x=7.2=14\\y=7.3=21\end{matrix}\right.\)

5) \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{10}=\dfrac{x+y-z}{5+7-10}=\dfrac{20}{2}=10\)

\(\Rightarrow\left\{{}\begin{matrix}x=10.5=50\\y=10.7=70\\z=10.10=100\end{matrix}\right.\)

6) \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{3x}{9}=\dfrac{2y}{8}=\dfrac{2z}{10}=\dfrac{3x-2y+2z}{9-8+10}=\dfrac{121}{11}=11\)

\(\Rightarrow\left\{{}\begin{matrix}x=11.3=33\\y=11.4=44\\z=11.5=55\end{matrix}\right.\)

7) \(\Rightarrow\dfrac{x}{12}=\dfrac{y}{6}=\dfrac{z}{10}=\dfrac{x+y-z}{12+6-10}=\dfrac{20}{8}=\dfrac{5}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}.12=30\\y=\dfrac{5}{2}.6=15\\z=\dfrac{5}{2}.10=25\end{matrix}\right.\)

29 tháng 6 2017

Ta có :

a)

x/3=y/5

=>x=3y/5 
=>3y/5+y=16 
<=>8y/5=16 
=>y=16.5/8=10 
=>x=16-10=6

Vậy x = 6; y = 10

a: k=3

b: y=3x