Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AHCM có
I là trung điểm của AC
I là trung điểm của HM
Do đó: AHCM là hình bình hành
mà \(\widehat{AHC}=90^0\)
nên AHCM là hình chữ nhật
MK chỉ gợi ý thôi bạn tự triển khai nha! có gì không hiểu thì nhắn tin hỏi mk!
a, MHNA là hình chữ nhật vì có 3 góc \(\widehat{M};\widehat{N};\widehat{A} =90^o\)
b,nối DA và AE
Ta có:
AB là đường trung trực của DH ( tự cm) nên BD=BH và AD=AH
\(\Rightarrow \Delta BDA=\Delta BHA (c.c.c)\)
\(\Rightarrow \widehat{A_1}=\widehat{A_2}\) (1)
cm tương tự ta được \(\widehat{A_3}=\widehat{A_4}\) (2)
Từ (1) và (2) suy ra
\(\widehat{A_1}+\widehat{A_2}+\widehat{A_3}+\widehat{A_4}=2\widehat{A_2}+2\widehat{A_3}=2\left(\widehat{A_2}+\widehat{A_3}\right)\)
\(=2.90^o=180^o\)
\(\Rightarrow\widehat{DAE}=180^o\) suy ra D,A,E thẳng hàng
c, Từ 2 cặp tam giác bằng nhau đã cm ở câu b ta suy ra được
\(\widehat{BDA}=\widehat{BHA}=90^o\Rightarrow BD\perp DE\)
và \(\widehat{AEC}=\widehat{AHC}=90^o\Rightarrow EC\perp DE\)
Từ 2 cái trên suy ra BD//EC suy ra DBCE là hình thang
( đây là hình thang vuông nha!)
d, cũng từ 2 cặp tam giác bằng nhau ở câu b suy ra
AH=DA và AH=AE
suy ra AH+AH=AD+AE=DE
mà MHNA là HCN suy ra MN=AH
suy ra AH+AH=AH+MN
suy ra AH+MN=DE
a: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật