K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2023

N ở đâu vậy bạn?

22 tháng 10 2023

BC á

tui nhầm

 

10 tháng 12 2021

a: Xét tứ giác AHCE có

D là trung điểm của AC

D là trung điểm của HE

Do đó: AHCE là hình bình hành

mà \(\widehat{AHC}=90^0\)

nên AHCE là hình chữ nhật

11 tháng 12 2023

a: Xét tứ giác AHCE có

D là trung điểm chung của aC và HE

=>AHCE là hình bình hành

Hình bình hành AHCE có \(\widehat{AHC}=90^0\)

nên AHCE là hình chữ nhật

b:Ta có: AHCE là hình bình hành

=>AE//CH và AE=CH

=>AE//IH

Xét tứ giác AEHI có

AE//HI

AI//EH

Do đó: AEHI là hình bình hành

c: Ta có: AEHI là hình bình hành

=>AE=HI

mà AE=HC

nên HI=HC

=>H là trung điểm của CI

Xét tứ giác ACKI có

H là trung điểm chung của AK và CI

=>ACKI là hình bình hành

Hình bình hành ACKI có AK\(\perp\)CI

nên ACKI là hình thoi

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K

16 tháng 12 2020

a) Xét ΔAEC có

H là trung điểm của EC(E và C đối xứng với nhau qua H)

D là trung điểm của AC(gt)

Do đó: HD là đường trung bình của ΔAEC(Định nghĩa đường trung bình của tam giác)

⇒HD//AE và \(HD=\dfrac{AE}{2}\)(Định lí 2 về đường trung bình của tam giác)

b) Ta có: HD//AE(cmt)

mà I∈HD(gt)

nên AE//IH

Ta có: AI//BC(gt)

mà H∈BC

và E∈BC

nên AI//EH

Xét tứ giác AEHI có 

AI//EH(cmt)

AE//HI(cmt)

Do đó: AEHI là hình bình hành(Dấu hiệu nhận biết hình bình hành)