K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2021

a: Ta có: E và H đối xứng nhau qua AB

nên AB là đường trung trực của EH

Suy ra: AB\(\perp\)EH tại M và M là trung điểm của EH

Ta có: H và F đối xứng nhau qua AC

nên AC là đường trung trực của HF

Suy ra: AC\(\perp\)HF tại N và N là trung điểm của FH

Xét tứ giác AMHN có 

\(\widehat{MAN}=\widehat{ANH}=\widehat{AMH}=90^0\)

Do đó: AMHN là hình chữ nhật

17 tháng 11 2021

xin lỗi anh(chị) em mới lớp 6 không giải đc

thật lòng xin lỗi :(((((

17 tháng 11 2021

((((((((🙄)))))))))___________bn ghi như mình đi thì bn sẽ có cái nịt 👉👈!!!

31 tháng 12 2017

a) Xét tứ giác ANHM, ta có

\(\widehat{MAN}=\widehat{ANH}=\widehat{AMH}=90^o\) (gt)

=> AMHN là hình chữ nhật

31 tháng 12 2017

b)

Xét tam giác AEH, ta có:

AM là đg trung tuyến( M là trung điểm EH)

AM là đcao(AM vuông góc với EH)

=> tam giác AEH cân tại A

Mà AM là đg trung tuyến(M là trung điểm EH)

Nên AM là đg phân giác

=> \(\widehat{EAH}=\widehat{MAH}\) (1)

Xét tam giác HAE ta có:

AN là đcao(AN vuông góc với FH)

AN là đg trung tuyến ( N là trung điểm HF)

=> tam giác AHE cân tại A

Mà AN là đg trung tuyến ( N là trung điểm HF)

Nên AN là đg phân giác

=> \(\widehat{NAH}=\widehat{NAF}\) (2)

Từ (1) và (2)

=> \(\widehat{HAM}+\widehat{HAN}=90^o=\widehat{EAM}+\widehat{NAF}\)

=> \(\widehat{HAM}+\widehat{HAN}+\widehat{EAM}+\widehat{NAF}=90^o+90^o=180^o\)

=> E,A,F thẳng hàng

Ta có:

AE=AH(tam giác AEH cân tại A)

AF=AH(tam giác HAF cân tại A)

=> AE=AF

=> E là trung điểm EF

=> E đối xứng với F qua A

8 tháng 8 2019

A B C H D E M N I

a) Tứ giác AEHD có 3 góc vuông nên góc còn lại cũng vuông \(\Rightarrow\) tứ giác AEHD là hình chữ nhật.

b)Ta cần chứng minh NA = AM và A, M, N thẳng hàng

Do tứ giác AEHD là hình chữ nhật nên AD // EH \(\Rightarrow\)AD//NE (1)

Mặt khác DE là đường trung bình nên DE // NM \(\Rightarrow\)DE //NA(2)

Từ (1) và (2) suy ra tứ giác EDAN là hình bình hành \(\Rightarrow\) ED = AN (*)

Tương tự ED = AM (**) .Từ (*) và (**) suy ra AM = AN (***)

Dễ chứng minh \(\Delta\)MAD = \(\Delta\)HAD \(\Rightarrow\)^MAD = ^HAD (4)

Tương tự: ^NAE = ^HAE (5) . Cộng theo vế (4) và (5) suy ra ^MAD + ^NAE = 90o (6)

Từ (6) suy ra  ^MAD + ^NAE + ^EAD = 90o + ^EAD = 180o \(\Rightarrow\)N, A, E thẳng hàng (****)

Từ (***) và (****) suy ra đpcm.

c)\(\Delta\)ABC vuông tại A có AI là trung tuyến nên \(AI=\frac{1}{2}BC=CI\)\(\Rightarrow\)\(\Delta\)ACI cân tại I

\(\Rightarrow\)^IAC = ^ICA (7)

Mặt khác ta dễ dàng chứng minh \(\Delta\)CNA = \(\Delta\)CHA (tự chứng minh đi nhé!)

Suy ra ^NCA = ^HCA \(\Rightarrow\)^NCA = ^ICA (8) (vì H, I cùng thuộc B nên ta có H, I, C thẳng hàng do đó ^HCA = ^ICA)

Từ (7) và (8) ta có ^IAC = ^NCA. Mà hai góc này ở vị trí so le trong nên ta có đpcm.

P/s: Không chắc nha!

a: Xét ΔABC có

D,E lần lượt là trung điểm của AB,AC

=>DE là đường trung bình của ΔABC

=>DE//BC và \(DE=\dfrac{1}{2}BC\)

DE//BC

mà H\(\in\)BC

nên DE//CH

Xét tứ giác DECH có DE//CH

nên DECH là hình thang

Ta có: ΔHAB vuông tại H 

mà HD là đường trung tuyến

nên \(HD=DA=DB=\dfrac{AB}{2}\)

Ta có: ΔHAC vuông tại H

mà HE là đường trung tuyến

nên \(HE=AE=EC=\dfrac{AC}{2}\)

Xét ΔEAD và ΔEHD có

EA=EH

DA=DH

ED chung

Do đó: ΔEAD=ΔEHD

=>\(\widehat{EAD}=\widehat{EHD}=90^0\)

Xét tứ giác ADHE có

\(\widehat{DAE}+\widehat{DHE}=90^0+90^0=180^0\)

=>ADHE là tứ giác nội tiếp

b: Xét tứ giác AHCF có

E là trung điểm chung của AC và HF

=>AHCF là hình bình hành

Hình bình hành AHCF có \(\widehat{AHC}=90^0\)

nên AHCF là hình chữ nhật

a: Xét tứ giác AEHF có 

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

Do đó: AEHF là hình chữ nhật