Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tam giác t1: Polygon A, B, C Góc α: Góc giữa O, H, C Góc α: Góc giữa O, H, C Đoạn thẳng c: Đoạn thẳng [A, B] Đoạn thẳng a: Đoạn thẳng [B, C] Đoạn thẳng b: Đoạn thẳng [C, A] Đoạn thẳng h: Đoạn thẳng [A, O] Đoạn thẳng i: Đoạn thẳng [H, O] Đoạn thẳng j: Đoạn thẳng [M, O] Đoạn thẳng k: Đoạn thẳng [B, O] Đoạn thẳng l: Đoạn thẳng [O, C] A = (0.92, 3.72) A = (0.92, 3.72) A = (0.92, 3.72) B = (-0.62, -1) B = (-0.62, -1) B = (-0.62, -1) C = (8, -1.2) C = (8, -1.2) C = (8, -1.2) Điểm O: Giao điểm đường của f, g Điểm O: Giao điểm đường của f, g Điểm O: Giao điểm đường của f, g Điểm H: Giao điểm đường của g, b Điểm H: Giao điểm đường của g, b Điểm H: Giao điểm đường của g, b Điểm M: Giao điểm đường của d, b Điểm M: Giao điểm đường của d, b Điểm M: Giao điểm đường của d, b
a) Gọi trung điểm của AC là H.
Xét tam giác AOH và COH có:
AH = CH (gt)
OH chung
\(\widehat{AHO}=\widehat{CHO}=90^o\)
\(\Rightarrow\Delta AOH=\Delta COH\) (Hai cạnh góc vuông)
\(\Rightarrow OA=OC\) (Hai cạnh tương ứng)
Hay tam giác OAC cân tại O.
b) Xét tam giác ABO và tam giác AMO có:
AB = AM (gt)
Cạnh AO chung
\(\widehat{BAO}=\widehat{MAO}\) (Do AO là tia phân giác góc A)
\(\Rightarrow\Delta ABO=\Delta AMO\left(c-g-c\right)\Rightarrow OB=OM\)
Hay tam giác OMB cân tại O.
c) Ta có \(AH=\frac{AC}{2}=\frac{3\sqrt{2}}{2}\left(cm\right)\)
Xét tam giác vuông AOH, áp dụng định lý Pi-ta-go ta có:
\(OH^2=AO^2-AH^2=3^2-\left(\frac{3\sqrt{2}}{2}\right)^2=\frac{9}{2}\)
\(\Rightarrow OH=\frac{3\sqrt{2}}{2}=AH\)
Vậy ta giác OAH vuông cân tại H. Suy ra \(\widehat{OAH}=45^o\Rightarrow\widehat{BAC}=2.45^o=90^o\)
Vậy tam giác ABC vuông tại A.
E D A C B F I
a) Xét \(\Delta\)BAE và \(\Delta\)DAC có: ^BAE = ^DAC ( đối đỉnh ) ; AD = AB ( gt ) ; AE = AC ( gt )
=> \(\Delta\)BAE = \(\Delta\)DAC ( c.g.c)
=> BE = DC
b) Tương tự câu a dễ dàng cm đc: \(\Delta\)ADE = \(\Delta\)ABC => ^ADE = ^ABC => DE//BC
=> ^EDI = ^DIC mà ^EDI = ^BDI ( DI là phân giác ^BDE )
=> ^DIC = ^BDI hay ^DIB = ^IDB => \(\Delta\)BDI cân tại B.
c) Ta có: ^DBC là góc ngoài tại đỉnh B của \(\Delta\)BDI => ^DBC = ^BDI + ^BID = 2. ^BID = 2. ^CIF( theo b) (1)
Có: CF là phân giác ^BCA =>^BCF = ^ACF => ^BCA = ^BCF + ^ACF = 2. ^BCF = 2. ^ICF (2)
Lại có: ^CFD là góc ngoài của \(\Delta\)FCI => ^CFD = ^CIF + ^ICF (3)
Từ (1) ; (2) ; (3) => 2 .^CFD = 2 ^CIF + 2. ^ICF = ^DBC + ^BCA = ^DBC + ^CED ( ^CED = ^BCA vì ED //BC )
A B C K H I
a,áp dụng định lý py-ta-go vào tam giác vuông ABC ta có
\(AB^2+AC^2=BC^2\)
\(3^2+4^2=BC^2\)
\(9+16=BC^2\)
\(25=BC^2\)
\(\Rightarrow BC=5cm\)
b, Ta có :
\(\hept{\begin{cases}HK\perp AC\left(gt\right)\\AB\perp AC\left(\Delta ABC\perp A\right)\end{cases}}\)
\(\Rightarrow HK//AB\left(\perp AC\right)\)
c, Xét tam giác vuông AKH và tam giác vuông AIH có:
AH : cạnh chung
HI=HK(GT)
=> tam giác vuông AKH = tam giác vuông AIH ( 2 cạnh góc vuông )
=> AK = AI ( 2 cạnh tương ứng )
=> tam giác AKI cân tại A(AK = AI : 2 CẠNH BÊN)
d, ta có tam giác AKI cân tại A( cmt )
\(\Rightarrow\widehat{AIK}=\widehat{AKI}\)( 2 góc ở đáy) (1)
lại có HK // AB ( cmt)
=>\(\widehat{BAK}=\widehat{AKI}\)( 2 góc slt) (2)
từ (1) và (2) =>\(\widehat{AIK}=\widehat{BAK}\left(=\widehat{AKI}\right)\)
e, ta có tam giác vuông AKH = tam giác vuông AIH (cmt)
\(\Rightarrow\widehat{KAH}=\widehat{IAH}\)( 2 Góc tương ứng)
xét tam giác AIC và tam giác AKC có :
AK=AI(GT)
AC: cạnh chung
\(\widehat{KAH}=\widehat{IAH}\)(CMT)
=> tam giác AIC = tam giác AKC (C-G-C)
mk giải bài ktra cho các bn lớp 7a nè ko bt z đây mà chép
Câu 5 (bài cuối cùng ý)
A B C M N I
a/. Xét \(\Delta BNC\)và \(\Delta CMB\), có:
BM = CN = AB/2 (vì AB=AC do tam giác ABC cân tại A)
và: góc B = Góc C (tam giác ABc cân tại A)
BC cạnh chung
Vậy tam giác BNC = tam giác CMB (c.g.c)
=> NC = MB (2 cạnh tương ứng =)
b/. Vì tam giác BNC = tam giác CMB => góc NBC = góc MCB (2 góc tg ứng =)
=> tam giác CIB cân tại I do góc NBC = góc MCB (2 góc ở đáy =)
c/. Xét tam giác BAI và tam giác CAI, có:
AB = AC (tam giác ABC cân tại A)
và: AI canh chung
và: IB = IC (tam giác IBC cân tại B)
=> tam giác BAI = tam giác CAI (c.c.c)
=> góc BAI = góc CAI (2 góc tg ứng =)
mà tia AI nằm giauwx 2 tia AB và AC
Vậy AI là tia phân giác của góc A trong ta giác ABC