Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a : 7 dư 3 cm a2 : 7 dư 2
Ta có: a = 7k + 3
⇔ a2 = (7k + 3)2
⇔ a2 = 49k2 + 42k + 9
⇔ a2 = 7.(7k2 + 6k + 1) + 2
7 ⋮ 7 ⇔ 7.(7k2 + 6k + 1) ⋮ 7
⇔ a2 = 7.(7k2 + 6k + 1) + 2 : 7 dư 2 (đpcm)
Cách 2 sử dụng đồng dư thức:
a \(\equiv\) 3 (mod 7) ⇔ a2 \(\equiv\) 32 (mod 7) 32 : 7 dư 2 ⇔ a2 : 7 dư 2 (đpcm)
Do x chia 7 dư 1 nên \(x=7k+1\left(k\in N\right)\)
Vậy \(x^2=\left(7k+1\right)^2=49k^2+14k+1=7\left(7k^2+2k\right)+1\)
Vậy \(x^2\) chia 7 dư 1.
Chúc em học tốt :)
Ta có:x=7k+1(k thuộc N)
=>x2=(7k+1)2=(7k)2+2.7k.1+12=49k2+14k+1=7k(7k+2)+1
Vì 7k(7k+2) chia hết cho 7 =>7k(7k+2)+1 chia 7 dư 1
- Ta có a : 5 dư 1 => a = 5t +1 ( t thuộc N )
- a : 5 dư 2 => a= 5k +2 ( k thuộc N )
- Theo BT ta có ( 5t + 1 )2 + ( 5k + 2 )2 = 25t2 +10t + 1 + 25k2 + 20k + 4
= 25( t2 + k2 ) + 10( t + 10k ) +5 chia hết cho 5 vì 25( t2 + k2 ) ; 10( t + 10k ) và 5 đều chia hết cho 5
Nên tổng các bình phương của hai số a và b đều chia hết cho 5
a chia 7 dư 3 nên a = 7k + 3 \(\left(k\in N\right)\)
Ta có: \(a^2=\left(7k+3\right)^2=49k+42k+9=7\left(7k+6+1\right)+2\)
Vậy \(a^2\)chia 7 dư 2
ta có a:7 dư 3
suy ra a^2:7 dư 3 nhân 3
mà 3.3 =9. 9 chia 7 dư 2
vậy a^2 chia 7 dư 2
Bài 1:
\(a+b=15\)
\(\Rightarrow\left(a+b\right)^2=225\)
\(\Leftrightarrow a^2+2ab+b^2=225\)
\(\Leftrightarrow a^2+4+b^2=225\)
\(\Leftrightarrow a^2+b^2=221\)
Ta có: \(\left(a-b\right)^2=a^2-2ab+b^2\)
\(=221-4\)
\(217\)
Bài 2:
Vì \(x:7\)dư 6
\(\Rightarrow x\equiv-1\left(mod7\right)\)
\(\Rightarrow x^2\equiv1\left(mod7\right)\)
Vậy \(x^2:7\)dư 1
Vì số tự nhiên a chia 7 dư 3
Nên số tự nhiên a có dạng 7k + 3 (k thuộc N)
Khi đó : a2 = (7k + 3)2 = 49k2 + 9
Vì 49k2 chia hết cho 7 (k thuộc N)
Mà 9 chia 7 dư 2
Nên a2 chia 7 dư 2 (đpcm)
a chia 7 dư 3
Mà 3^2 = 9 chia 7 dư 2
Nên a^2 chia 7 dư 2 (đpcm)