Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(sđ\left(Ox;Ou\right)=-260^o=-260^o+360^o=100^0\)
mà \(sđ\left(Ox;Ov\right)=150^o\)
\(\Rightarrow sđ\left(Ou;Ov\right)=150^o-100^0=50^0\)
a) Ta có:
- Các góc lượng giác tia đầu Ou, tia cuối Ov có số đo là
sđ\((Ou,Ov) = {30^ \circ } + n{.360^ \circ }\)
- Các góc lượng giác tia đầu Ov, tia cuối Ow có số đo là
sđ \((Ov,Ow) = {45^ \circ } + m{.360^ \circ }\)
- Các góc lượng giác tia đầu Ou, tia cuối Ow có số đo là
sđ \((Ou,Ow) = {75^ \circ } + k{.360^ \circ }\)
b) Với các góc lượng giác ở câu a, ta có:
\(sđ(Ou,Ov) +sđ (Ov,Ow)\)
\( = {30^ \circ } + n{.360^ \circ } + {45^ \circ } + m{.360^ \circ } \)
\(= {75^ \circ } + (n+m){.360^ \circ } \)
\(= {75^ \circ } + k{.360^ \circ = sđ (Ou,Ow)} \)
với k = n + m
Theo hệ thức Chasles, ta có:
\(\begin{array}{l}(Ov,Ow) = (Ou,Ov) - (Ou,Ow) + k2\pi \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \, - \frac{{11\pi }}{4} - \frac{{3\pi }}{4} + k2\pi = - \frac{7}{2} + k2\pi ,\,\,(k \in \mathbb{Z})\end{array}\)
Ta có:
\((O'u',O'v') = (Ou,Ov) + k2\pi \,\, = \, - \frac{{4\pi }}{3}\, + k2\pi \,\,\,\,\,\,\,\,(k \in \mathbb{Z})\)
Quan sát Hình 7 ta thấy:
• Tia Om quay (chỉ theo chiều dương) xuất phát từ tia Ou đến trùng với tia Ov rồi quay tiếp một số vòng đến trùng với tia cuối Ov;
• Tia Om quay (chỉ theo chiều dương) xuất phát từ tia \(O'u' \equiv Ou\) đến trùng với tia \(O'v' \equiv Ov\)rồi quay tiếp một số vòng đến trùng với tỉa cuối \(O'v' \equiv Ov\).
Như vậy, sự khác biệt giữa hai góc lượng giác (Ou, Ov) và (O’u’, O’v’) chính là số vòng quay quanh điểm O. Vì vậy, sự khác biệt giữa số đo của hai góc lượng giác đó chính là bội nguyên của \({360^ \circ }\) khi hai góc đó tính theo đơn vị độ (hay bội nguyên của \(2\pi \) rad khi hai góc đó tính theo đơn vị radian).
a) Ta có:
- Các góc lượng giác tia đầu Ou, tia cuối Ov có số đo là \((Ou,Ov) = {45^ \circ } + k{.360^ \circ }\)
b) Ta có:
- Các góc lượng giác tia đầu Ou, tia cuối Ov có số đo là \((Ou,Ov) = - {315^ \circ } + k{.360^ \circ }\)
Tham khảo:
Ta có \( - \frac{{5\pi }}{4} = - \pi + \left( { - \frac{\pi }{4}} \right)\). Góc lượng giác gốc O có tia đầu Ou, tia cuối Ov và có số đo \( - \frac{{5\pi }}{4}\) được biểu diễn ở hình sau:
\(sđ\left(Ou;Ov\right)=sđ\left(Ox;Ov\right)-sđ\left(Ox;Ou\right)\)
\(=150^0-\left(-260^0\right)+k\cdot360^0\)
\(=410^0+k\cdot360^0\)
\(=50^0+\left(k-1\right)\cdot360^0\)