K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2019

\(M=a^2-\frac{2.ab.1}{2}+\left(\frac{1}{2}b\right)^2+\frac{3}{4}b^2=\left(a-\frac{1}{2}b\right)^2+\frac{3}{4}b^2\ge0\)

Dấu = xảy ra khi \(\hept{\begin{cases}\frac{3}{4}b^2=0\\a=\frac{1}{2}b\end{cases}}\Leftrightarrow a=b=0\)

12 tháng 4 2017

uk Bạch An Nhiên

12 tháng 4 2017

Với mọi x thuộc R có : \(2.\left|x-3\right|\ge0\)

Suy ra 9-\(2.\left|x-3\right|\) \(\ge\) 9

Suy ra P \(\ge\) 9 với mọi x thuộc R

Xét P=9 khi chỉ khi /x-3/=0

x-3=0

x=3

24 tháng 6 2017

a, Ta có: \(-2\left|x-3\right|\le0\)

\(\Rightarrow A=9-2\left|x-3\right|\le9\)

Dấu " = " khi \(2\left|x-3\right|=0\Rightarrow x=3\)

Vậy \(MAX_A=9\) khi x = 3

b,Ta có: \(B=\left|x-2\right|+\left|x-8\right|=\left|x-2\right|+\left|8-x\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) có:

\(B=\left|x-2\right|+\left|8-x\right|\ge\left|x-2+8-x\right|=\left|6\right|=6\)

Dấu " = " khi \(\left\{{}\begin{matrix}x-2\ge0\\8-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge2\\x\le8\end{matrix}\right.\)

Vậy \(MIN_B=6\) khi \(2\le x\le8\)

24 tháng 6 2017

a, \(A=9-2\left|x-3\right|\)

Với mọi giá trị của \(x\in R\) ta có:

\(2\left|x-3\right|\ge0\Rightarrow9-2\left|x-3\right|\le9\)

Hay \(A\le9\) với mọi giá trị của \(x\in R\).

Để \(A=9\) thì \(9-2\left|x-3\right|=9\)

\(\Rightarrow2\left|x-3\right|=0\Rightarrow x=3\)

Vậy..........

b, \(B=\left|x-2\right|+\left|x-8\right|\)

\(B=\left|x-2\right|+\left|8-x\right|\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left|x-2\right|\ge x-2;\left|8-x\right|\ge8-x\)

\(\Rightarrow\left|x-2\right|+\left|8-x\right|\ge x-2+8-x\ge6\)

Hay \(B\ge6\) với mọi giá trị của \(x\in R\).

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\left|x-2\right|\ge0\\\left|8-x\right|\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge2\\x\le8\end{matrix}\right.\)

\(\Rightarrow2\le x\le8\)

Vậy..............

Chúc bạn học tốt!!!

1 tháng 3 2018

Ta thấy ngay DMEA là hình chữ nhật nên DE = AM

Gọi H là chân đường vuông góc hạ từ A xuống BC.

Theo quan hệ giữa đường vuông góc và đường xiên thì \(AM\ge AH\)

Vậy AM nhỏ nhất khi AM = AH hay DE nhỏ nhất khi M trùng H.

21 tháng 2 2020

bài này có cần vẽ hình không ạ

11 tháng 12 2017

EAMD hình chữ nhật( có 3 góc vuông )

=> ED = AM

AM ngắn nhất vuông khi AM vuông góc với BC

=> ED ngắn nhất khi M là chân đường vuông góc hạ từ A xuống BC

21 tháng 1 2018

EAMD hình chữ nhật( có 3 góc vuông )

=> ED = AM

AM ngắn nhất vuông khi AM vuông góc với BC

=> ED ngắn nhất khi M là chân đường vuông góc hạ từ A xuống BC

13 tháng 1 2019

a)  \(M=\left|x-3\right|+\left|x-5\right|=\left|x-3\right|+\left|5-x\right|\ge\left|x-3+5-x\right|=2\)

Dấu "=" xra   <=>   \(\left(x-3\right)\left(5-x\right)\ge0\)

                     <=>     \(3\le x\le5\)

Vậy....