Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2n+15}{n+1}\in Z\Rightarrow2n+15⋮n+1\)
\(\Rightarrow2n+15-2\left(n+1\right)⋮n+1\)
\(\Rightarrow13⋮n+1\)
\(\Rightarrow n+1=Ư\left(13\right)\)
\(\Rightarrow n+1=\left\{-13;-1;1;13\right\}\)
\(\Rightarrow n=\left\{-14;-2;0;12\right\}\)
Cách hai: Theo bezout ta có: \(\dfrac{2n+15}{n+1}\) \(\in\) Z ⇔ 2.(-1) + 15 ⋮ n +1
⇔ 13 ⋮ n +1 ⇒ n + 1 \(\in\) { -13; -1; 1; 13} ⇒ n \(\in\) { -14; -2; 0; 12}
\(\dfrac{2n+15}{n+1}=\dfrac{2n+2+13}{n+1}=\dfrac{2\left(n+1\right)+13}{n+1}=\dfrac{2\left(n+1\right)}{n+1}+\dfrac{13}{n+1}=2+\dfrac{13}{n+1}\left(ĐKXĐ:n\ne-1\right)\)
Để \(\dfrac{2n+15}{n+1}\in Z\) thì \(13⋮n+1\) hay \(n+1\inƯ\left(13\right)\)
Xét bảng :
Ư(13) | n+1 | n |
13 | 13 | 12 |
-13 | -13 | -14 |
1 | 1 | 0 |
-1 | -1 | -2 |
Vậy để 2n+15/n+1 là số nguyên thì \(n\in\left\{-14;-2;0;12\right\}\)
Để C là số nguyên thì x chia hết cho 2x-1
=>2x chia hết cho 2x-1
=>2x-1+1 chia hết cho 2x-1
=>\(2x-1\in\left\{1;-1\right\}\)
mà x lớn nhất
nên 2x-1=1
=>x=1
a) Để \(A=\frac{7}{9}\Leftrightarrow\frac{5n+2}{2n+7}=\frac{7}{9}\)
\(\Leftrightarrow9\left(5n+2\right)=7\left(2n+7\right)\)
\(\Leftrightarrow45n+18=14n+49\)
\(\Leftrightarrow31n=31\)
\(\Leftrightarrow n=1\)
n) Để A nguyên thì \(\frac{5n+2}{2n+7}\in Z\)
Nếu A nguyên thì 2A cũng nguyên. Vậy ta tìm n nguyên để 2A nguyên sau đó thử lại để chọn các giá trị đúng của n.
\(2A=\frac{10n+4}{2n+7}=\frac{5\left(2n+7\right)-31}{2n+7}=5-\frac{31}{2n+7}\)
Để 2A nguyên thì \(2n+7\inƯ\left(31\right)=\left\{\pm1;\pm31\right\}\)
Ta có bảng:
2n + 7 | 1 | -1 | 31 | -31 |
n | -3 | -4 | 12 | -19 |
KL | TM | TM | TM | TM |
Vậy ta có \(n\in\left\{-1;-4;12;-19\right\}\)
c
a) để A là phân số thì x+1 khác không hay x khác -1, x thuộc Z
b) để A không là phân số suy ra x=1
c) nếu x=-5 thì A=\(\frac{-9}{-4}\)
d)để A là số nguyên thì 2X+1 chia hết x+1 suy ra 1 chia hết x+1 suy ra x=0:-2
e)để A đạt GTLN thf x+1 phải nguyên dương và bé nhất =1 vậy để A đạt GTLN thì x=0
H ϵ Z ⇔ 4x - 5 ⋮ 2x - 1 ⇔ 2(2x -1) -3 ⋮ 2x - 1
⇔ 2x - 1 ϵ { -3;-1;1;3} ⇔ x ϵ {-1; 0;1; 2}