Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để x-5là bội cua x-2 => \(x-5⋮x+2\)
=> \(x+2-7⋮x-2\)
=> \(7⋮x-2\)
suy ra x-2 thuộc ước của 7
x-2=1>x=3
x-2=-1>x=1
x-2=7> x=9
x-2=-7>x=5
Theo đề ta có :
x - 5 là bội của x+ 2
\(=>x-5⋮x+2\)
\(=>x+2-7⋮x+2\)( Nếu không hiểu bước này thì nhờ giáo viên bạn giảng lại hoặc có thể hỏi mình nha )
Vì x + 2 - 7 chia hết cho x + 2
Đồng thời : x + 2 chia hết cho x + 2
=> 7 chia hết cho x + 2
=> x + 2 thuộc { -1 ; 1 ; -7 ; 7 }
=> x thuộc { -3 ; -1 ; -9 ; 5 }
\(1a,A=\left|5-x\right|+\left|y-2\right|-3\)
Vì \(\left|5-x\right|\ge vs\forall x,\left|y-2\right|\ge vs\forall y\Rightarrow A\ge3\)
Dấu \("="\) xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|5-x\right|=0\\\left|y-2\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}5-x=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=2\end{cases}}\)
Vậy \(A_{min}=3\Leftrightarrow x=5,y=2\)
\(b,B=\left|4-2x\right|+y^2+\left(2-1\right)^2-6\)
\(=\left|4-2x\right|+y^2-5\)
Vì \(\left|4-2x\right|\ge vs\forall x;y^2\ge0vs\forall y\Rightarrow B\ge-5\)
Dấu \("="\) xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|4-2x\right|=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}4-2x=0\\y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=0\end{cases}}\)
Vậy \(B_{min}=-5\Leftrightarrow x=2,y=0\)
\(c,C=\frac{1}{2}-\left|x-2\right|\) ( bn xem lại đề nhé )
a,A=|x-7|+12
Vì \(\left|x-7\right|\ge0\forall x\)nên \(\left|x-7\right|+12\ge12\forall x\)
Ta thấy A=12 khi |x-7| = 0 => x-7 = 0 => x = 7
Vậy GTNN của A là 12 khi x = 7
b,B=|x+12|+|y-1|+4
Vì \(\left|x+12\right|\ge0\forall x\)
\(\left|y-1\right|\ge0\forall y\)
nên \(\left|x+12\right|+\left|y-1\right|\ge0\forall x,y\)
\(\Rightarrow\left|x+12\right|+\left|y-1\right|+4\ge4\forall x,y\)
Ta thấy B = 4 khi \(\hept{\begin{cases}\left|x+12\right|=0\\\left|y-1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x+12=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-12\\y=1\end{cases}}\)
Vậy GTNN của B là 4 khi x = -12 và y = 1
\(\frac{y}{3}-\frac{1}{x}=\frac{1}{3}\)
\(\Leftrightarrow\frac{xy}{3x}-\frac{3}{3x}=\frac{x}{3x}\)
\(\Leftrightarrow xy-3=x\)
\(\Leftrightarrow xy-x=3\)
\(\Leftrightarrow x\left(y-1\right)=3=\left(-1\right).\left(-3\right)=3.1\)( vì x, y là các số nguyên )
\(TH1:\)
\(\orbr{\begin{cases}x=1\\y-1=3\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\y=4\end{cases}}\)
\(\orbr{\begin{cases}x=3\\y-1=1\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\y=2\end{cases}}}\)
\(TH2:\)
\(\orbr{\begin{cases}x=-1\\y-1=-3\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\y=-2\end{cases}}\)
\(\orbr{\begin{cases}x=-3\\y-1=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=-3\\y=0\end{cases}}\)
Vậy .......
Giải: Có y/3-1/x=1/3
y/3-1/3=1/x
Suy ra y-1/3=1/x
Suy ra (y-1).x=3
Suy ra y-1 và x thuộc Ư(3)
Vì x,y thuộc Z
Do đó ta có bảng giá trị:
y-1 | 1 | 3 | -1 | -3 |
x | 3 | 1 | -3 | -1 |
y | 2 | 4 | 0 | -2 |
Vậy (x,y)= {...........}
nha
* Nếu x lẻ mà y >0 => x^y lẻ => x^y+1=z là chẵn mà z là snt => z=2
=> x^y+1=2=> x^y=1 => x=1 (vô lý vì x là số nguyên tố) => x lẻ (sai)
*Nếu x chẵn mà x là số nguyên tố => x=2 => 2^y+1=z
Quên mất ấn nhầm sory
* Nếu x lẻ mà y >0 => x^y lẻ => x^y+1=z là chẵn mà z là snt => z=2
=> x^y+1=2=> x^y=1 => x=1 (vô lý vì x là số nguyên tố) => x lẻ (sai)
*Nếu x chẵn mà x là số nguyên tố => x=2 => 2^y+1=z
+) y=2 => 2^2+1=z => z=5 (t/m)
+)y>2 mà y là snt => y lẻ => y=2k+1 => z= 2^(2k+1)+1 =4^k.2 +1
Ta có :4 chia 3 dư 1 => 4^k chia 3 dư 1 => 4^k.2 chia 3 dư 2=> z chia hết cho 3
mà z>2^2 +1>3
=>z o là snt => y>2 (sai).
Vậy x=2,y=2,z=5