\(y=\dfrac{3}{4}x-3\)

a) Vẽ (d)

b) Tính diện tích tam...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2020

Câu a em tự học thành tài nhé

b. 

+) Giao điểm giữa (d) và Ox là: A( a; 0) 

=> 0 = \(\frac{3}{4}\)a - 3  => a = 4 

=> A (4; 0) => OA = |4 | = 4 

+  Giao điểm giữa (d) và Oy là: B( 0; b) 

=> b = \(\frac{3}{4}\).0 - 3  => b = -3 

=> B (0; -3) => OB = | - 3| = 3

Xét tam giác OAB vuông tại O => S (OAB) = \(\frac{1}{2}.OA.OB=\frac{1}{2}.3.4=6\left(đ.v.d.t\right)\)

c. Kẻ OH vuông AB => OH là khoảng cách từ O đến (d) 

=> \(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{1}{3^2}+\frac{1}{4^2}=\frac{25}{144}\)

=> OH = 2,4 

Vậy khoảng cách từ O đến (d) là 2,4 

2 tháng 10 2020

a, Hình vẽ

b, Gọi \(A=\left(d\right)\cap Ox;B=\left(d\right)\cap Oy\) ta cần tính \(S_{OAB}\)

\(x=0\Rightarrow y=-3\Rightarrow B\left(0;-3\right)\in\left(d\right)\Rightarrow OB=3\)

\(x=4\Rightarrow y=0\Rightarrow A\left(4;0\right)\in\left(d\right)\Rightarrow OA=4\)

\(S_{\Delta OAB}=\frac{1}{2}.OA.OB=\frac{1}{2}.4.3=6\)

c, Gọi H là chân đường vuông góc kẻ từ O đến \(\left(d\right)\)

Ta có \(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{1}{16}+\frac{1}{9}=\frac{25}{144}\Rightarrow OH=\frac{12}{5}\)

2 tháng 10 2020
https://i.imgur.com/w66nXho.png
17 tháng 4 2021

a) Gọi \(A\in Ox;B\in Oy\Rightarrow\Delta OAB\)vuông tại O

Đường thẳng (d) giao Ox tại điểm \(A\left(x;0\right)\)-> thay y=0 vào hàm số ta được: 0=(m+2)x+3 -> (m+2)x=-3 -> \(x=\frac{-3}{m+2}\)

-> Điểm \(A\left(\frac{-3}{m+2};0\right)\)-> \(OA=|\frac{-3}{m+2}|\)(OA>0)

Đường thẳng (d) giao Oy tại điểm \(B\left(0;y\right)\)-> thay x=0 vào hàm số ta được: y=(m+2).0+3=3

-> Điểm \(B\left(0;3\right)\)-> \(OB=3\)

Có: \(S_{\Delta OAB}=\frac{3}{4}=\frac{1}{2}OA\cdot OB=\frac{1}{2}\cdot3\cdot\frac{|-3|}{|m+2|}=\frac{3\cdot3}{2|m+2|}=\frac{9}{2|m+2|}\)

\(\Rightarrow6|m+2|=36\Leftrightarrow|m+2|=6\Leftrightarrow\orbr{\begin{cases}m+2=6\\m+2=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=4\\m=-8\end{cases}}\)(TM)

Vậy...

b) ĐK: OA>0

\(\Delta OAB\)vuông tại O -> \(AB=\sqrt{OA^2+OB^2}=\sqrt{3^2+\left(\frac{-3}{m+2}\right)^2}=\sqrt{9+\frac{9}{\left(m+2\right)^2}}\)

Kẻ \(OH\perp d\)tại H -> OH là khoảng cách từ đường thẳng từ O đến d

Áp dụng htl trong \(\Delta OAB\)vuông tại O, đường cao OH -> \(OA.OB=OH.AB\)

\(\rightarrow3\cdot\frac{|-3|}{|m+2|}=\frac{3\sqrt{2}}{2}.\sqrt{9+\frac{9}{\left(m+2\right)^2}}\)

\(\Leftrightarrow\left(3\cdot\frac{|-3|}{|m+2|}\right)^2=\left(\frac{3\sqrt{2}}{2}\right)^2\left(9+\frac{9}{\left(m+2\right)^2}\right)\)

\(\Leftrightarrow\frac{81}{\left(m+2\right)^2}=\frac{9\cdot9}{2}+\frac{9\cdot9}{2\left(m+2\right)^2}\Leftrightarrow\frac{81}{\left(m+2\right)^2}=\frac{81}{2}+\frac{81}{2\left(m+2\right)^2}\)

\(\Leftrightarrow\frac{1}{\left(m+2\right)^2}-\frac{1}{2}-\frac{1}{2\left(m+2\right)^2}=0\Leftrightarrow\frac{2-\left(m+2\right)^2-1}{2\left(m+2\right)^2}=0\)  ( \(2\left(m+2\right)^2>0\))

\(\Rightarrow1-\left(m+2\right)^2=0\Rightarrow\left(m+2\right)^2=1\Leftrightarrow\orbr{\begin{cases}m+2=1\\m+2=-1\end{cases}}\)     

\(\Leftrightarrow\orbr{\begin{cases}m=-1\\m=-3\end{cases}}\)(TM)

Vậy...

Hì cậu kiểm tra xem tớ có sai dấu hay sai bước chỗ nào với nhé vì tớ hay cẩu thả lắm:'33

2 tháng 10 2020

Bạn tham khảo tại đây:

Câu hỏi của Hằng Nga - Toán lớp 9 | Học trực tuyến

17 tháng 9 2019

1.

Gọi A là tọa độ giao điểm của (d1) và (d2)

Xét phương trình hoành độ giao điểm của d1 và d2 

\(x+4=\frac{-1}{2}x+\frac{7}{4}\)

\(\Leftrightarrow x+4=\frac{-2x+7}{4}\)

\(\Leftrightarrow4x+16=-2x+7\)

\(\Leftrightarrow6x=-9\)

\(\Leftrightarrow x=-\frac{3}{2}\)

Thay x = -3/2 vào ( d1 ) ta được:

y = -3/2 + 4 = 5/2

Vậy tọa độ giao điểm của 2 đường thẳng là   A (-3/2 ; 5/2 )

2.

a)

x y=3/4x-3 0 -3 0 4

0 y x -3 4 y=3/4x-3 B C H

b) Áp dụng hệ thức lượng vào tam giác OBC vuông tại O

\(\frac{1}{OH^2}=\frac{1}{OB^2}+\frac{1}{OC^2}\)

\(\Leftrightarrow\frac{1}{OH^2}=\frac{1}{4^2}+\frac{1}{\left(-3\right)^2}\)

\(\Leftrightarrow\frac{1}{OH^2}=\frac{25}{144}\)

\(\Leftrightarrow OH^2=\frac{144}{25}\)

\(\Leftrightarrow OH=\frac{12}{5}=2,4\)

Vậy khoảng cách từ gốc tọa độ đến đường thẳng (D) là 2,4 

Học tốt!!!