K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2019

1.

Gọi A là tọa độ giao điểm của (d1) và (d2)

Xét phương trình hoành độ giao điểm của d1 và d2 

\(x+4=\frac{-1}{2}x+\frac{7}{4}\)

\(\Leftrightarrow x+4=\frac{-2x+7}{4}\)

\(\Leftrightarrow4x+16=-2x+7\)

\(\Leftrightarrow6x=-9\)

\(\Leftrightarrow x=-\frac{3}{2}\)

Thay x = -3/2 vào ( d1 ) ta được:

y = -3/2 + 4 = 5/2

Vậy tọa độ giao điểm của 2 đường thẳng là   A (-3/2 ; 5/2 )

2.

a)

x y=3/4x-3 0 -3 0 4

0 y x -3 4 y=3/4x-3 B C H

b) Áp dụng hệ thức lượng vào tam giác OBC vuông tại O

\(\frac{1}{OH^2}=\frac{1}{OB^2}+\frac{1}{OC^2}\)

\(\Leftrightarrow\frac{1}{OH^2}=\frac{1}{4^2}+\frac{1}{\left(-3\right)^2}\)

\(\Leftrightarrow\frac{1}{OH^2}=\frac{25}{144}\)

\(\Leftrightarrow OH^2=\frac{144}{25}\)

\(\Leftrightarrow OH=\frac{12}{5}=2,4\)

Vậy khoảng cách từ gốc tọa độ đến đường thẳng (D) là 2,4 

Học tốt!!! 

23 tháng 8 2023

Do (d1) song song với đường thẳng y = 2x nên a = 2

(d1): y = 2x + b

Thay tọa độ điểm (1; -1) vào (d) ta được:

2.1 + b = -1

⇔ b = -1 - 2

⇔ b = -3

Vậy (d1): y = 2x - 3

b) x = 0 ⇒ y = -3

*) Đồ thị:

loading...  

c) Phương trình hoành độ giao điểm của (d1) và (d2):

2x - 3 = 1/2 x + 1

⇔ 2x - 1/2 x = 1 + 3

⇔ 3/2 x = 4

⇔ x = 4 : 2/3

⇔ x = 8/3

⇒ y = 2.8/3 - 3 = 7/3

Vậy tọa độ giao điểm của (d1) và (d2) là (8/3; 7/3)

d) Ta có:

Gọi a là góc cần tính

⇒ tan(a) = 2

⇒ a ≈ 63⁰

23 tháng 8 2023

(b) và (d) bạn tự xem kiến thức vẽ rồi áp dụng công thức tan là làm được nha=)

a)

Đồ thị hàm số (d1)// đường thẳng `y=2x`

=> \(\left\{{}\begin{matrix}a=a'\\b\ne b'\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b\ne0\end{matrix}\right.\)

=> `y=2x+b`

Do hàm số `y=2x+b` đi qua điểm `(1;-1)` nên `x=1`, `y=-1`:

`-1=2.1+b`

=> `b=-3`

Vậy hàm số `y=ax+b` là `y=2x-3`

c)

Ta có PTHĐGĐ giữa `d_1` và `d_2`:

 \(2x-3=\dfrac{1}{2}x+1\\ \Rightarrow x=\dfrac{8}{3}\Rightarrow y=\dfrac{7}{3}\)

Vậy `E=`\(\left(\dfrac{8}{3};\dfrac{7}{3}\right)\)

$HaNa$

a: Để hàm số đồng biến thì m-1>0

hay m>1

20 tháng 12 2020

b) Vì A(xA;yA) là giao điểm của (D) và (D1) nên Hoành độ của A là nghiệm của phương trình hoành độ giao điểm có hai vế là hai hàm số của (D) và (D1)

hay \(-x-4=3x+2\)

\(\Leftrightarrow-x-4-3x-2=0\)

\(\Leftrightarrow-4x-6=0\)

\(\Leftrightarrow-4x=6\)

hay \(x=-\dfrac{3}{2}\)

Thay \(x=-\dfrac{3}{2}\) vào hàm số y=-x-4, ta được: 

\(y=-\left(-\dfrac{3}{2}\right)-4=\dfrac{3}{2}-4=\dfrac{3}{2}-\dfrac{8}{2}=-\dfrac{5}{2}\)

Vậy: \(A\left(-\dfrac{3}{2};-\dfrac{5}{2}\right)\)

c) Vì (D2) song song với (D) nên a=-1

hay (D2): y=-x+b

Vì (D2) đi qua điểm B(-2;5)

nên Thay x=-2 và y=5 vào hàm số y=-x+b, ta được: 

-(-2)+b=5

hay b=5-2=3

Vậy: (D2): y=-x+3

20 tháng 12 2020

b) Vì A(xA;yA) là giao điểm của (D) và (D1) nên Hoành độ của A là nghiệm của phương trình hoành độ giao điểm có hai vế là hai hàm số của (D) và (D1)

hay \(-x-4=3x+2\)

\(\Leftrightarrow-x-4-3x-2=0\)

\(\Leftrightarrow-4x-6=0\)

\(\Leftrightarrow-4x=6\)

hay \(x=-\dfrac{3}{2}\)

Thay \(x=-\dfrac{3}{2}\) vào hàm số y=-x-4, ta được: 

\(y=-\left(-\dfrac{3}{2}\right)-4=\dfrac{3}{2}-4=\dfrac{3}{2}-\dfrac{8}{2}=-\dfrac{5}{2}\)

Vậy: \(A\left(-\dfrac{3}{2};-\dfrac{5}{2}\right)\)

c) Vì (D2) song song với (D) nên a=-1

hay (D2): y=-x+b

Vì (D2) đi qua điểm B(-2;5)

nên Thay x=-2 và y=5 vào hàm số y=-x+b, ta được: 

-(-2)+b=5

hay b=5-2=3

Vậy: (D2): y=-x+3

22 tháng 12 2022

a,Giao của d1 và d2 là điểm có hoành độ thỏa mãn pt :

x -1  = - x + 3 

x  - 1 + x - 3 = 0

2x - 4 = 0

2x = 4

x = 2

thay x = 2 vào pt  y = x - 1 => y = 2 - 1 = 1

Giao của d1 và d2 là A ( 2; 1)

b, để d1; d2; d3 đồng quy thì d3 phải đi qua giao điểm của d1 và d2 là điểm A ( 2; 1)

Thay tọa độ điểm A vào pt d3 ta có :

2.(m-2) .2 + (m-1) = 1

4m - 8 + m - 1 = 1

5m - 9 = 1

5m = 10

m = 2

vậy với m = 2 pt d3 là y = 2 -1 = 1 thì d1; d2 ; d3 đồng quy tại 1 điểm 

c, vẽ đồ thị hàm số câu này dễ bạn tự làm nhé

Giao d1 với Ox là điểm có tung độ  y = 0 => x -1 = 0 => x = 1

Vậy giao d1 với Ox là điểm B( 1;0)

độ dài OB là 1 

Giao d1 với trục Oy điểm có hoành độ x = 0 => y = 0 - 1 = -1

Vậy giao d1 với Oy là điểm C ( 0; -1)

Độ dài OC = |-1| = 1

vẽ đồ thị bạn tự vẽ nhé 

d, Xét tam giác  vuông OBC có 

OB = OC = 1 ( cmt)

=> tam giác OBC vuông cân tại O

=> góc OBC = ( 1800 - 900): 2 = 450

Kết luận d1 tạo với trục Ox một góc bằng 450

 

 

8 tháng 12 2021

\(a,m=3\Leftrightarrow\left(d_1\right):y=2x+1\\ b,\text{Gọi PT cần tìm là }\left(d_2\right):y=ax+b\left(a\ne0\right)\\ \Leftrightarrow\left\{{}\begin{matrix}a=2\\b\ne1\end{matrix}\right.\Leftrightarrow\left(d_2\right):y=2x+b\\ \text{PT giao }Ox:y=0\Leftrightarrow x=-\dfrac{b}{2}\Leftrightarrow A\left(-\dfrac{b}{2};0\right)\Leftrightarrow OA=\left|\dfrac{b}{2}\right|\\ \text{PT giao }Oy:x=0\Leftrightarrow y=b\Leftrightarrow B\left(0;b\right)\Leftrightarrow OB=\left|b\right|\)

Gọi H là chân đường cao từ O tới \(\left(d_2\right)\Leftrightarrow OH=1\)

Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}\)

\(\Leftrightarrow\dfrac{4}{b^2}+\dfrac{1}{b^2}=1\\ \Leftrightarrow\dfrac{5}{b^2}=1\Leftrightarrow b^2=5\Leftrightarrow b=\pm\sqrt{5}\left(tm\right)\)

Vậy \(\left(d_2\right)\) có dạng \(\left(d_2\right):y=2x+\sqrt{5}\) hoặc \(\left(d_2\right):y=2x-\sqrt{5}\)

8 tháng 12 2021

\(c,\text{Gọi điểm cần tìm là }A\left(x_0;y_0\right)\\ \Leftrightarrow y_0=mx_0-x_0+m-2\\ \Leftrightarrow m\left(x_0+1\right)-\left(x_0+y_0+2\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0+1=0\\x_0+y_0+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=-1\end{matrix}\right.\Leftrightarrow A\left(-1;-1\right)\\ \text{Vậy }A\left(-1;-1\right)\text{ là điểm cố định mà }\left(d\right)\text{ đi qua với mọi }m\)

\(\text{PT giao }Ox:y=0\Leftrightarrow x=\dfrac{2-m}{m-1}\Leftrightarrow A\left(\dfrac{2-m}{m-1};0\right)\Leftrightarrow OA=\left|\dfrac{m-2}{m-1}\right|\\ \text{PT giao }Oy:x=0\Leftrightarrow y=m-2\Leftrightarrow B\left(0;m-2\right)\Leftrightarrow OB=\left|m-2\right|\\ \text{Ta có }S_{OAB}=\dfrac{1}{2}OA\cdot OB=\dfrac{1}{2}\cdot\left|\dfrac{m-2}{m-1}\right|\cdot\left|m-2\right|\\ \Leftrightarrow S_{OAB}=\dfrac{\left(m-2\right)^2}{2\left|m-1\right|}\)

Đặt \(S_{OAB}=t\)

Với \(m\ge1\Leftrightarrow t=\dfrac{\left(m-2\right)^2}{2\left(m-1\right)}\Leftrightarrow2mt-2t=m^2-4m+4\)

\(\Leftrightarrow m^2-2m\left(2-t\right)+2t+4=0\)

PT có nghiệm \(\Leftrightarrow\Delta'=\left(2-t\right)^2-\left(2t+4\right)\ge0\)

\(\Leftrightarrow t^2-6t\ge0\Leftrightarrow t\left(t-6\right)\ge0\Leftrightarrow\left[{}\begin{matrix}t\le0\\t\ge6\end{matrix}\right.\left(1\right)\)

Với \(m< 1\Leftrightarrow t=\dfrac{\left(m-2\right)^2}{2\left(1-m\right)}\Leftrightarrow2t-2mt=m^2-4m+4\)

\(\Leftrightarrow m^2+2m\left(t-2\right)+4-2t=0\)

PT có nghiệm \(\Leftrightarrow\Delta'=\left(t-2\right)^2-\left(4-2t\right)\ge0\)

\(\Leftrightarrow t^2-2t\ge0\Leftrightarrow t\left(t-2\right)\ge0\Leftrightarrow\left[{}\begin{matrix}t\le0\\t\ge2\end{matrix}\right.\left(2\right)\)

\(\left(1\right)\left(2\right)\Leftrightarrow t\ge6\)

Vậy \(\left(S_{OAB}\right)_{min}=6\Leftrightarrow\dfrac{\left(m-2\right)^2}{2\left|m-1\right|}=6\)

\(\Leftrightarrow12\left|m-1\right|=m^2-4m+4\\ \Leftrightarrow\left[{}\begin{matrix}12\left(m-1\right)=m^2-4m+4\left(m\ge1\right)\\12\left(1-m\right)=m^2-4m+4\left(m< 1\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m^2-16m+16=0\\m^2+8m-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=8\pm4\sqrt{3}\\m=-4\pm2\sqrt{6}\end{matrix}\right.\)