K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2020

A A A B B B C C C D D D M M M 1 2

Để so sánh \(\widehat{A_1}\)và \(\widehat{A_2}\),ta đưa chúng về một tam giác.Trên tia đối của tia MA,lấy điểm D sao cho MD = MA

Xét \(\Delta AMB\)và \(\Delta DMC\)có :

AM = DM(cmt)

\(\widehat{MAB}=\widehat{MDC}\)

MB = MC(vì M là trung điểm của BC)

=> \(\Delta AMB=\Delta DMC\left(c-g-c\right)\)

=> \(\widehat{A_1}=\widehat{D}\)(hai góc tương ứng)(1)

      \(AB=CD\)(hai cạnh tương ứng)

Ta có : AC > AB, AB = CD nên AC > CD

\(\Delta ACD\)có AC > CD nên \(\widehat{D}>\widehat{A_2}\)(2)

Từ (1) và (2) => \(\widehat{A_1}>\widehat{A_2}\)hay \(\widehat{MAC}< \widehat{BAM}\)

a: TRên tia đối của tia MA, lấy K sao cho M là trung điểm của AK

Xét tứ giác ABKC có

M là trung điểm chung của AK và BC

=>ABKC là hình bình hành

=>AB//KC và AB=KC

=>góc BAM=góc CKA

mà góc BAM>góc MAC
nên góc CKA>góc CAK

=>CA>CK

=>CA>AB

b: 

TRên tia đối của tia MA, lấy K sao cho M là trung điểm của AK

Xét tứ giác ABKC có

M là trung điểm chung của AK và BC

=>ABKC là hình bình hành

=>AB//KC và AB=KC

=>AC>KC

=>góc CKA>góc CAK

=>góc MAB>góc MAC

HISINOMA KINIMADO Anh yếu phần này lắm e ạ :)) Sợ nhất phần này luôn ... sorry ...

Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMAB=ΔMDC
=>AB=DC

mà AB<AC

nên CD<CA

Xét ΔCDA có CD<CA

mà \(\widehat{CAD};\widehat{CDA}\) lần lượt là góc đối diện của cạnh CD,CA

nên \(\widehat{CAD}< \widehat{CDA}\)

mà \(\widehat{CDA}=\widehat{BAM}\)(ΔMAB=ΔMDC)

nên \(\widehat{BAM}>\widehat{CAM}\)

6 tháng 3 2018

* Xét ΔABM và ΔMCE: AM=ME

\(\widehat{AMB}=\widehat{CME}\)

BM=MC

⇒ ΔABM = ΔMCE (c.g.c)

⇒ CE=AB ( 2 cạnh tương ứng)

\(\widehat{BAM}=\widehat{CEM}\)( 2 góc tương ứng)

Vì AB<AC

⇒ CE<AC

Xét ΔACE có: CE< AC

\(\widehat{MAC}= \widehat{CEM}\)

\(\widehat{BAM}=\widehat{CEM}\) (cmtrn)

\(\widehat{BAM}=\widehat{MAC}\) (đpcm)

6 tháng 3 2018

M A B C E // // / /

30 tháng 6 2020

thiếu đề bài ko thế bn