Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\widehat {BAD} = \widehat {CAD}\)(vì AD là phân giác của góc BAC).
Mà \(\widehat B > \widehat C\)nên \(\widehat B + \widehat {BAD} > \widehat C + \widehat {CAD}\).
Tổng ba góc trong một tam giác bằng 180° nên:
\(\begin{array}{l}\widehat B + \widehat {BAD} > \widehat C + \widehat {CAD}\\ \to 180^\circ - (\widehat B + \widehat {BAD}) < 180^\circ - (\widehat C + \widehat {CAD})\\ \to \widehat {ADB} < \widehat {ADC}\end{array}\)
b) Xét hai tam giác ADB và tam giác ADE có:
\(\widehat {ADB} = \widehat {ADE}\);
AD chung;
\(\widehat {BAD} = \widehat {EAD}\).
Vậy \(\Delta ABD = \Delta AED\) (g.c.g)
Trong một tam giác, cạnh đối diện với góc lớn hơn thì lớn hơn.
Trong tam giác ABC có \(\widehat B > \widehat C\) nên AC > AB hay AB < AC (AB là cạnh đối diện với góc C, AC là cạnh đối diện với góc B).
a: TRên tia đối của tia MA, lấy K sao cho M là trung điểm của AK
Xét tứ giác ABKC có
M là trung điểm chung của AK và BC
=>ABKC là hình bình hành
=>AB//KC và AB=KC
=>góc BAM=góc CKA
mà góc BAM>góc MAC
nên góc CKA>góc CAK
=>CA>CK
=>CA>AB
b:
TRên tia đối của tia MA, lấy K sao cho M là trung điểm của AK
Xét tứ giác ABKC có
M là trung điểm chung của AK và BC
=>ABKC là hình bình hành
=>AB//KC và AB=KC
=>AC>KC
=>góc CKA>góc CAK
=>góc MAB>góc MAC