K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HISINOMA KINIMADO Anh yếu phần này lắm e ạ :)) Sợ nhất phần này luôn ... sorry ...

a) Xét \(\Delta ABC\) vuông tại A

\(Bc^2=Ab^2+AC^2\Rightarrow AB^2=BC^2-AC^2=10^2-8^2\text{​​}\Rightarrow AB=6cm\)

b) Xét \(\Delta ABM\)\(\Delta CDM\) có:

\(AM=CM;\widehat{AMB}=\widehat{CMD};BM=DM\)

\(\Rightarrow\) \(\Delta ABM\) = \(\Delta CDM\)

\(\Rightarrow\) \(\widehat{BAM}=\widehat{DCM}=90^ohayAC\perp CD\)

c) Có : BC + DC > BD

mà BM = 2 BD ; DC = AB

\(\Rightarrow\) DC + BC > 2BM

1Đặt:\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2005.2006}\)\(B=\frac{1}{1004.2006}+\frac{1}{1005.2005}+...+\frac{1}{2006.1004}\)Chứng minh rằng \(\frac{A}{B}\) là số nguyên.2Tìm nghiệm nguyên dương của phương trình:xy-2x-3y+1=03Cho f(x)=\(ãx^2+bx+c\)thỏa mãn:f(-3)<-10;f(-1)>0;f(1)<-1.Hãy xác định dấu của hệ số a4Cho x2+y2=1.Tìm giá trị lớn nhất của biểu thức:S=(2-x)(2-y)5CHo tam giác ABC với \(\widehat{B}\)<900...
Đọc tiếp

1Đặt:

\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2005.2006}\)

\(B=\frac{1}{1004.2006}+\frac{1}{1005.2005}+...+\frac{1}{2006.1004}\)

Chứng minh rằng \(\frac{A}{B}\) là số nguyên.

2Tìm nghiệm nguyên dương của phương trình:xy-2x-3y+1=0

3Cho f(x)=\(ãx^2+bx+c\)thỏa mãn:f(-3)<-10;f(-1)>0;f(1)<-1.Hãy xác định dấu của hệ số a

4Cho x2+y2=1.Tìm giá trị lớn nhất của biểu thức:S=(2-x)(2-y)

5CHo tam giác ABC với \(\widehat{B}\)<900 và \(\widehat{B}=2\widehat{C}\).Kẻ AH vuông góc với BC(H\(\in\)BC).Trên tia đối của tia BA LẤY ĐIỂM e SAO CHO BE=BH.Đường thẳng HE cắt AC tại D.

a)Chứng minh:\(\widehat{E}=\frac{1}{2}\widehat{ABC}\)

b)Chứng minh DA=DH=DC

c)Lấy điểm B*sao cho H là trung điểm của BB*.Chứng minh rằng:tam giác AB*C cân.

d)Chứng minh:AE=HC.

6Cho tam giác ABC(AB=AC) với góc ACB=80 độ.Trong tam giác ABC có điểm M sao cho góc MAB =10 độ và góc MBA=30 độ.Tính góc BMC

 

2
23 tháng 1 2020

                                                         Bài giải

\(A=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2005\cdot2006}\)

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2005}-\frac{1}{2006}\)

\(A=\frac{1}{2}-\frac{1}{2006}\)

\(A=\frac{501}{1003}\)

23 tháng 1 2020

                                                         Bài giải

\(A=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2005\cdot2006}\)

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2005}-\frac{1}{2006}\)

\(A=\frac{1}{2}-\frac{1}{2006}\)

\(A=\frac{501}{1003}\)

17 tháng 4 2019

cho t.giác ABC vuông ở C, có \(\widehat{C}\)=60 độ là sao vậy bn,đã vuông thì pk = 90 độ chứ