Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét từ giác AMNB ta có:
BM | AC => góc AMB =90
AN | BC => góc ANB =90
=> AMB = ANB
Mà: điểm M và N cùng nhìn 1 cạnh AB
=> AMNB nội tiếp => góc ABM = góc MBN
Hay: sđ cung EC =sđ cung DC
=> đpcm
b, Xét tứ giác MCNH , ta có:
góc HMC =90 và góc HNC =90
=> góc HMC + góc HNC =180
=> Tứ giác MCNH nội tiếp => góc HMN = góc HCN
Mà: góc HMN= góc NAB (cùng chắn cung BN)
Hay gócNAB = góc BCD (cùng chắn cung BD)
Từ trên suy ra: góc HCN = góc NCD
Xét 2 tam giác: tg HCN và tg NCD
góc HNC= góc CND = 90
NC chung
góc HCN = góc NCD
=> tg HCN = tg NCD (gcg)
=> HN=ND =>đpcm
a, Học sinh tự chứng minh
b, Học sinh tự chứng minh
c, Học sinh tự chứng minh
d, Chú ý: B I A ^ = B M A ^ , B M C ^ = B K C ^
=> Tứ giác BICK nội tiếp đường tròn (T), mà (T) cũng là đường tròn ngoại tiếp DBIK. Trong (T), dây BC không đổi mà đường kính của (T) ≥ BC nên đường kính nhỏ nhất bằng BC
Dấu "=" xảy ra <=> B I C ^ = 90 0 => I ≡ A => MA